|Table of Contents|

Effect of NaOH Concentration on Formation and Photocatalytic Performanceof TiO2 Nanotubes Prepared by Hydrothermal Method(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2018年03期
Page:
52-
Research Field:
·化学·
Publishing date:

Info

Title:
Effect of NaOH Concentration on Formation and Photocatalytic Performanceof TiO2 Nanotubes Prepared by Hydrothermal Method
Author(s):
Zhang Zheng1Jia Jiankui1Jiang Caiyun2Huang Wenxin1Feng Changsheng1Wang Yuping1
(1.Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control,Nanjing Normal University,Nanjing 210023,China)(2.Department of Engineering and Technology,Jiangsu Institute of Commerce,Jiangsu Engineering andResearch Center of Food Safety,Nanjing 210007,China)
Keywords:
NaOH concentrationTiO2 nanotubeshydrothermal methodphotocatalysismethylene blue
PACS:
O643,X703A
DOI:
10.3969/j.issn.1001-4616.2018.03.009
Abstract:
TiO2 nanotubes were prepared via hydrothermal synthesis by taking titanium dioxide P25 and NaOH as raw materials. The effects of alkali concentration on nanotube formation,crystal form and morphology were investigated. The composition,structure and morphology of the as-prepared samples were characterized by XRD,TEM,BET and XPS. The results showed that the P25 particles in the system can be dissolved and crystallized to form sodium titanate curl body when the NaOH concentration was higher than 10 mol/L. The steps of washing,pickling and calcination were necessary to form anatase phase titanium dioxide nanotubes. When the concentration of NaOH was 10 mol/L,the specific surface area of nanotubes reached 213.30 m2/g,which was 4.2 times as much as that of P25. In photodegradation test,when exposed to metal halide lamp for 24 min,the degradation rate of 20 mg/L methylene blue reached 100% for titanium dioxide nanotubes and 63.38% for P25,respectively.

References:

[1] ZHU J P,HOU H H,FENG M M,et al. Research progress on application of nano titanium dioxide in silicate industry[J]. Bulletin of the chinese ceramic society,2016,35(9):2874-2851.
[2]ZHAO B,LIN L,CHEN C,et al. Research progress on crystal growth mechanism of titania/titanate nano-powder materials[J]. Journal of inorganic materials,2013,28(7):683-690.
[3]FAN Z H,LIU D R,SHI G L,et al. Research progress in morphology-controllable hydrothermal synthesis of TiO2 nanostructures[J]. Studies in synthetic chemistry,2015,3(3):64-69.
[4]LI T L,ZHANG Y,TAO W. The preparation and TiO2 nanotubes photocatalytic degradation of methyl orange research[J]. Sichuan nonferrous metals,2010(4):20-23.
[5]王俏,王威,崔福义,等. 二氧化钛纳米管的制备、改性及应用[J]. 化工进展,2015,34(5):1311-1316.
[6]ZHANG A Y,YU L Q,HE J D,et al. Photoelectrochemical properties of CdS-TiO2 heterojunction nanocomposites[J]. Applied chemical industry,2017,46(3):439-443.
[7]WANG J R,LI W Y,YAO B D. Hydrothermally produced titania nanotubes:formation mechanism,influence factors and applications[J]. Materials review,2016,30(5):144-152.
[8]YNAG Z G,WANG Y,YAO X J,et al. Progress on preparation and application of titania nanotubes[J]. Applied chemical industry,2014,11:2094-2096.
[9]YUAN F,WU C,CAI Y,et al. Synthesis of phytic acid-decorated titanate nanotubes for high efficient and high selective removal of U(VI)[J]. Chemical engineering journal,2017,156(3):353-365.
[10]YAO B D,CHAN Y F,ZHANG X Y,et al. Formation mechanism of TiO2 nanotubes[J]. Applied physics letters,2003,82(2):281-283.
[11]KUKOVECZ A,HODOS M,HORVATH E,et al. Oriented crystal growth model explains the formation of titania nanotubes[J]. Journal of physical chemistry,2005,109(38):17781-17783.
[12]WANG Y Q,HU G Q,DUAN X F,et al. Microstructure and formation mechanism of titanium dioxide nanotubes[J]. Chemical physics letters,2002,365(5/6):427-431.
[13]PAVLOVIAc’1 D M,BABIAc’1 S,HORVAT A J M,et al. Sample preparation in analysis of pharmaceuticals[J]. Trac trends in analytical chemistry,2007,26(11):1062-1075.
[14]杨志冲. 高效石墨相氮化碳基光催化材料的制备及其性能研究[D]. 杭州:浙江理工大学,2015.
[15]李跃军,曹铁平,梅泽民,等. Pr掺杂Bi2MoO6/TiO2复合纳米纤维的制备及可见光催化性能[J]. 高等学校化学学报,2017,38(12):2313-2319.
[16]SUN J,LIU S X. Preparation of lanthanum-doped TiO2 film and its application for gaseous toluene removal[J]. Journal of inorganic materials,2010,25(9):928-934.
[17]LIU Z Q,MA J,ZHANG Z L,et al. SnO2-TiO2 solid catalyst for simultaneous reduction of SO2 and NO by CO II. physicochemical properties of the catalyst[J]. Chinese journal of catalysis,2004,25(4):302-308.
[18]魏学刚. TiO2基稀磁半导体的制备及室温铁磁性研究[D]. 兰州:兰州理工大学,2014.
[19]赵斌. 特殊形貌TiO2/钛酸盐纳米材料的合成与生成机理[D]. 上海:华东理工大学,2011.
[20]KASUGA T,HIRAMATSU M,HOSON A,et al. Titania nanotubes prepared by chemical processing[J]. Advanced materials,2010,11(15):1307-1311.
[21]ZHANG S,PENG L M,CHEN Q,et al. Formation mechanism of H2Ti3O7 nanotubes[J]. Physical review letters,2003,91(25):12475-12493.
[22]BAVYKIN D V,PARMON V N,LAPKIN A A,et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. Journal of materials chemistry,2004,14(22):3370-3377.
[23]SUN X,LI Y. Synthesis and characterization of ion-exchangeable titanate nanotubes[J]. Chemistry,2003,9(10):2229-2238.
[24]武伦鹏,赵莲花,张海明,等. 光电流法研究TiO2薄膜表面吸附氧对光催化活性的影响[J]. 物理化学学报,2007,23(5):765-768.

Memo

Memo:
-
Last Update: 2018-11-19