|Table of Contents|

Stability of Steady State Solution for a Lotka-VolterraModel with Cross Diffusion(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2018年04期
Page:
7-
Research Field:
·数学与计算机科学·
Publishing date:

Info

Title:
Stability of Steady State Solution for a Lotka-VolterraModel with Cross Diffusion
Author(s):
Xu Qian1Zhao Ye2Yang Yujie1
(1.Department of Basic Courses,Beijing Union University,Beijing 100101,China)(2.Department of Mathematics and Physics,Beijing Institute of Petrolchemical Technology,Beijing 102617,China)
Keywords:
bifurcating solutionspectral analysisstability
PACS:
O175.2
DOI:
10.3969/j.issn.1001-4616.2018.04.002
Abstract:
We investigate a Lotka-Volterra model with cross diffusion in a spatially heterogeneous environment. Through the detailed spectral analysis and linearized stability theory,we prove that the bifurcating solution of the Lotka-Volterra system with cross diffusion is locally asymptotically stable.

References:

[1] KUTO K. Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment[J]. Nonlinear analysis:real world applications,2009,10:943-965.
[2]SHIGESADA N,KAWASAKI K,TERAMOTO E. Spatial segregation of interacting species[J]. J Theoret Biol,1979,79:83-99.
[3]NI W M,WU Y P,XU Q. The existence and stability of nontrivial steady states for S-K-T competition model with cross-diffusion[J]. Discrete Contin Dyn Syst,2014,34:5271-5298.
[4]WANG L,WU Y P,XU Q. Instability of spiky steady states for S-K-T biological competing model with cross-diffusion[J]. Nonlinear analysis,2017,159:424-457.
[5]WU Y P,XU Q. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion[J]. Discrete Contin Dyn Syst,2011,29:367-385.
[6]DU Y,PENG R,WANG M. Effect of a protection zone in the diffusive Leslie predator-prey model[J]. J differential equations,2009,246:3932-3956.
[7]DU Y,SHI J P. A diffusive predator-prey model with a protection zone[J]. J differential equations,2006,229:63-91.
[8]DU Y,SHI J P. Some recent results on diffusive predator-prey models in spatially heterogeneous environment[J]. Fields Inst Comm,2006,48:1-41.
[9]HUTSON V,LOU Y,Mischaikow K. Convergence in competition models with small diffusion coefficients[J]. J differential equations,2005,211:135-161.
[10]LI W T,WANG Y X,ZHANG J F.Stability of positive stationary solutions to a spatially heterogeneous cooperative system with cross-diffusion[J]. Electro J Differ Equ,2012,223:1-18.
[11]SHI J P. Persistence and bifurcation of degenerate solutions[J]. J Funct Anal,1999,169:494-531.
[12]KIELH?FER H. Bifurcation theory—an introduction with applications to PDEs[M]. New York:Springer-Verlag,2004.

Memo

Memo:
-
Last Update: 2018-12-30