|Table of Contents|

Note on the Weakly Prime-Additive Numbers(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2018年04期
Page:
26-
Research Field:
·数学与计算机科学·
Publishing date:

Info

Title:
Note on the Weakly Prime-Additive Numbers
Author(s):
Fang Jinhui
School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China
Keywords:
weakly prime-additive numbersDirichlet’s theoremChinese remainder theorem
PACS:
O156.1
DOI:
10.3969/j.issn.1001-4616.2018.04.005
Abstract:
A positive integer n is called weakly prime-additive if n has at least two distinct prime divisors and there exist distinct prime divisors p1,p2,…,pt of n and positive integers α12,…,αt such that n=pα11+pα22+…+pαtt. In this paper,by employing Chinese remainder theorem,Dirichlet’s theorem and the quadratic reciprocity law,we prove that,for any positive integers m and t,there exist infinitely many weakly prime-additive numbers n with m|n and n=pα11+pα22+…+pα4t4t+pα4t+14t+1,where p1,p2,…,p4t+1 are distinct prime divisors of n and α12,…,α4t+1 are positive integers.

References:

[1] ERDOS P,HEGYVARI N. On prime-additive numbers[J]. Studia Sci Math Hungar,1992,27:207-212.
[2]FANG J H,CHEN Y G. On the shortest weakly prime-additive numbers[J]. J number theory,2018,182:258-270.
[3]潘承洞,潘成彪. 初等数论[M]. 3版. 北京大学出版社,2013.
[4]NATHANSON M B. Elementary Methods in Number Theory[M]. New York:Springer,2000.

Memo

Memo:
-
Last Update: 2018-12-30