[1] SUYKENS J A K,VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural processing letters,1999,9(3):293-300.
[2]LEE Y J,MANGASARIAN O L. RSVM:Reduced support vector machines[C]//Proceedings of the 2001 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics. Chicago:Wellesey-Cambridge Press,2001.
[3]MANGASARIAN O L,WILD E W. Proximal support vector machine classifiers[C]//Proceedings KDD-2001:Knowledge Discovery and Data Mining. San Francisco:ACM Press,2001.
[4]MANGASARIAN O L,WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE transactions on pattern analysis and machine intelligence,2006,28(1):69-74.
[5]KHEMCHANDANI R,CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE transactions on pattern analysis and machine intelligence,2007,29(5):905-910.
[6]YE Q,ZHAO C,ZHANG H,et al. Distance difference and linear programming nonparallel plane classifier[J]. Expert systems with applications,2011,38(8):9425-9433.
[7]SHAO Y H,DENG N Y,CHEN W J. A proximal classifier with consistency[J]. Knowledge-based systems,2013,49(49):171-178.
[8]杨绪兵,陈松灿,杨益民. 局部化的广义特征值最接近支持向量机[J]. 计算机学报,2007,30(8):1227-1234.
[9]YE Q,ZHAO C,YE N,et al. Localized twin SVM via convex minimization[J]. Neurocomputing,2011,74(4):580-587.
[10]HUANG H,WEI X,ZHOU Y. Twin support vector machines:a survey[J]. Neurocomputing,2018,300:34-43.
[11]张凯军,梁循.马氏距离多核支持向量机学习模型[J]. 计算机工程,2014,40(6):219-225.
[12]ROTH P M,HIRZER M,K?STINGER M,et al. Mahalanobis distance learning for person re-identification[C]//Person re-identification. London:Springer Press,2014.
[13]BEHERA S K,DOGRA D P,ROY P P. Fast recognition and verification of 3D air signatures using convex hulls[J]. Expert systems with applications,2018,100:106-119.
[14]GARCíA S I D,PAJARES G. On-line crop/weed discrimination through the Mahalanobis distance from images in maize fields[J]. Biosystems engineering,2018,166:28-43.
[15]DE LA HERMOSA GONZáLEZ,R R. Wind farm monitoring using Mahalanobis distance and fuzzy clustering[J]. Renewable energy,2018,123:526-540.
[16]SUO M,ZHU B,ZHANG Y,et al. Fuzzy Bayes risk based on Mahalanobis distance and Gaussian kernel for weight assignment in labeled multiple attribute decision making[J]. Knowledge-based systems,2018,152:26-39.
[17]杨绪兵,王一雄,陈斌. 马氏度量学习中的几个关键问题研究及几何解释[J]. 南京大学学报(自然科学版),2013,49(2):133-141.
[18]BENNETT K P,BREDENSTEINER E J. Duality and geometry in SVM classifiers[C]//Seventeenth International Conference on Machine Learning. Stanford:Morgan Kaufmann Publishers Inc. 2000.
[19]CHAU A L,LI X,YU W. Convex and concave hulls for classification with support vector machine[J]. Neurocomputing,2013,122:198-209.
[20]SHANG J,CHEN M,ZHANG H. Fault detection based on augmented kernel Mahalanobis distance for nonlinear dynamic processes[J]. Computers & chemical engineering,2018,109:311-321.
[21]VERMA N,BRANSON K. Sample complexity of learning mahalanobis distance metrics[J]. Computer science,2015:2584-2592.
[22]MAHALANOBIS P C. On the generalized distance in statistics[J]. National institute of science of India,1936,2:49-55.
[23]DAI H. Theory of matrices[M]. Beijing:Science Press,2001.
[24]BIAN Z Q,ZHANG X G. Pattern recognition[M]. Beijing:Tsinghua Press,2005.
[25]XU H L,LONG G Z,BIE X F,et al. Active learning algorithm of SVM combining tri-training semi-supervised learning and convex-hull vector[J]. Pattern recognition and artificial intelligence,2016,1:39-46.
[26]REN D W,HU Z P. Construction of classifiers of approximative convex hull with reduced dimension[J]. Mathematics in practice and theory,2014(18):166-174.
[27]WANG W B. The research of SVM classifier method based on Gilbert algorithm and scaled convex hulls[D]. Fuzhou:Fuzhou University,2014.
[28]ZHANG X K. Research on high-dimensional data visualization methods and visualization classification techniques(Doctoral dissertation)[M]. Harbin:Harbin Institution of Technology,2013.
[29]CAI G X. Research and application of convex hull support vector machine based on two-phase method[J]. Coal technology,2013,32(5):200-202.
[30]杨铭,赵文雨. 基于内点法的凸壳算法在支持向量中的应用[J]. 信息与电脑(理论版),2013(4):144-145.
[31]YAN J,BI S B,WANG D,et.al. Parallel algorithm for computing convex hulls in multi-processor architecture[J]. Computer science,2013,40(2):16-19.
[32]HU Z P,LU L,FENG C S. Research on classification algorithm based on high-dimensional data description[J]. Journal of Yanshan university,2011,35(4):370-376.
[33]LIU Z B,CHEN Z,LIU J G. A novel geometric nearest point algorithm for constructing SVM classifiers[J]. Acta automatica sinica,2010,36(6):791-797.