[1] ZALAR B. On centralizers of semiprime rings[J]. Comment Math Univ Carol,1991,32(4):609-614.
[2]VUKMAN J. An identity related to centralizers in semiprime rings[J]. Comment Math Univ Carol,1999,40(3):447-456.
[3]VUKMANA J. On(ordan centralizers in rings and algebras[J]. Glas Mat Ser III,2010,45(1):43-53.
[4]LI Q,LI P. Centralizers of completely distributive CSL algebras[J]. Chinese Ann Math Ser A,2011,32(3):375-384.
[5]BENKOVIC D,EREMITA D. Characterizing left centralizers by their action a polynomial[J]. Publ Math Debrecen,2004,64(3):1-9.
[6]VUKMANA J,KOSI-ULBL I. Centralizers on rings and algebras[J]. Bull Austral Math Soc,2005,71(2):225-234.
[7]VUKMAN J,FOSNER M. A characterization of two-sided centralizers on prime rings[J]. Taiwanese J Math,2007,11(5):1431-1441.
[8]KOSI-ULBL I,VUKMAN J. On centralizers of standard operator algebras and semisimple H-algebras[J]. Acta Math Hungar,2006,110(3):217-223.
[9]YANG C,ZHANG J. Generalized Jordan centralizers on nest algebras[J]. Acta Math Sinica(Chin Ser),2010,53(5):975-980.
[10]ZHU H,ZHANG X,CHEN J. Centralizers and their applications to generalized inverses[J]. Linear Algebra Appl,2014,458:291-300.
[11]LIU L. Characterization of centralizers on nest subalgebras of von Neumann algebras by local action[J]. Linear multilinear Algebra,2016,64(3):383-392.
[12]CHEUNG W S. Commuting maps of triangular algebras[J]. J London Math Soc,2001,63:117-127.