|Table of Contents|

Nonlinear(m,n)-Lie Centralizers on Triangular Algebras(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2019年01期
Page:
23-
Research Field:
·数学·
Publishing date:

Info

Title:
Nonlinear(m,n)-Lie Centralizers on Triangular Algebras
Author(s):
Fei Xiuhai1Dai Lei2Zhang Haifang1
(1.Department of Mathematics,Dianxi Science and Technology Normal University,Lincang 677099,China)(2.College of Mathematics and Information Science,Weinan Normal University,Weinan 714099,China)
Keywords:
triangular algebracentralizerLie centralizernonlinear(mn)-Lie centralizer
PACS:
O177.1
DOI:
10.3969/j.issn.1001-4616.2019.01.005
Abstract:
Let m,n be fixed integers with(m+n)(m-n)≠0,U be a |(m+n)(m-n)|-torsion free triangular algebra with πA(Z(U))=Z(A)and πB(Z(U))=Z(B). If L is a nonlinear(m,n)-Lie centralizer from Uinto itself,then there exist a center element λ and a mapping ξ from Uinto Z(U)vanishing on all commutators such that L(x)=λx+ξ(x)for all x∈U.

References:

[1] ZALAR B. On centralizers of semiprime rings[J]. Comment Math Univ Carol,1991,32(4):609-614.
[2]VUKMAN J. An identity related to centralizers in semiprime rings[J]. Comment Math Univ Carol,1999,40(3):447-456.
[3]VUKMANA J. On(ordan centralizers in rings and algebras[J]. Glas Mat Ser III,2010,45(1):43-53.
[4]LI Q,LI P. Centralizers of completely distributive CSL algebras[J]. Chinese Ann Math Ser A,2011,32(3):375-384.
[5]BENKOVIC D,EREMITA D. Characterizing left centralizers by their action a polynomial[J]. Publ Math Debrecen,2004,64(3):1-9.
[6]VUKMANA J,KOSI-ULBL I. Centralizers on rings and algebras[J]. Bull Austral Math Soc,2005,71(2):225-234.
[7]VUKMAN J,FOSNER M. A characterization of two-sided centralizers on prime rings[J]. Taiwanese J Math,2007,11(5):1431-1441.
[8]KOSI-ULBL I,VUKMAN J. On centralizers of standard operator algebras and semisimple H-algebras[J]. Acta Math Hungar,2006,110(3):217-223.
[9]YANG C,ZHANG J. Generalized Jordan centralizers on nest algebras[J]. Acta Math Sinica(Chin Ser),2010,53(5):975-980.
[10]ZHU H,ZHANG X,CHEN J. Centralizers and their applications to generalized inverses[J]. Linear Algebra Appl,2014,458:291-300.
[11]LIU L. Characterization of centralizers on nest subalgebras of von Neumann algebras by local action[J]. Linear multilinear Algebra,2016,64(3):383-392.
[12]CHEUNG W S. Commuting maps of triangular algebras[J]. J London Math Soc,2001,63:117-127.

Memo

Memo:
-
Last Update: 2019-03-30