[1] GANGANWAR V. An overview of classification algorithms for imbalanced datasets[J]. International journal of emerging technology and advanced engineering,2012,2(4):42-47.
[2]SUN Y,WONG A K C,KAMEL M S. Classification of imbalanced data:a review[J]. International journal of pattern recognition and artificial intelligence,2009,23(4):687-719.
[3]HULSE V J,KHOSHGOFTAAR T M,NAPOLITANO A. An exploration of learning when data is noisy and imbalanced[J]. Intelligent data analysis,2011,15(2):215-236.
[4]YANG Q,WU X. 10 challenging problems in data mining research[J]. International journal of information technology and decision making,2006,5(4):597-604.
[5]LIU Y,HAN T L,SUN A. Imbalanced text classification:A term weighting approach[J]. Expert systems with applications,2009,36(1):690-701.
[6]THOMAS C. Improving intrusion detection for imbalanced network traffic[J]. Security and communication networks,2013,6(3):309-324.
[7]WANG S,YAO X. Using class imbalance learning for software defect prediction[J]. IEEE transactions on reliability,2013,62(2):434-443.
[8]BATUWITA R,PALADE V. FSVM-CIL:fuzzy support vector machines for class imbalance learning[J]. IEEE transactions on fuzzy systems,2010,18(3):558-571.
[9]YU H L,MU C,SUN C Y,et al. Support vector machine-based optimized decision threshold adjustment strategy for classifying imbalanced data[J]. Knowledge-based systems,2015,76(1):67-78.
[10]CHAWLA N V,BOWYER K W,Hall L O,et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of artificial intelligence research,2002,16(1):321-357.
[11]HAN H,WANG W Y,MAO B H. Borderline-SMOTE:A new over-sampling method in imbalanced data sets learning[C]//International Conference of Intelligent Computing. USA:ICIC,2005:878-887.
[12]GARCIA V,SáNCHEZ J S,MARTíN-FéLEZ R,et al. Surrounding neighborhood-based SMOTE for learning from imbalanced data sets[J]. Progress in artificial intelligence,2012,1(4):347-362.
[13]BUNKHUMPORNPAT C,SINAPIROMSARAN K,LURSINSAP C. Safe-level-SMOTE:safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem[C]//Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Germany:Springer-Verlag,2009:475-482.
[14]SáEZ J A,LUENGO J,STEFANOWSKI J,et al. SMOTE-IPF:addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering[J]. Information sciences,2015,291(5):184-203.
[15]向日华,王润生. 一种基于高斯混合模型的距离图像分割算法[J]. 软件学报,2003,14(7):1250-1257.
[16]吴福仙,温卫东. 极大似然最大熵概率密度估计及其优化解法[J]. 南京航空航天大学学报(自然科学版),2017,49(1):110-116.
[17]ALCALA F J,FEMANDEZ A,LUENGO J,et al. KEEL data-mining software tool:data set repository,integration of algorithms and experimental analysis framework[J]. Journal of multiple-valued logic and soft computing,2011,17(2/3):255-287.
[18]BLAKE C,KEOGH E,MERZ C J. UCI repository of machine learning databases[EB/OL]. http://www.ics.uci.edu/mlearn/MLRepository.html,1998.
[19]HE H,GARCIA E A. Learning from imbalanced data[J]. IEEE transactions on knowledge & data engineering,2009,21(9):1263-1284.
[20]GUO H X,LI Y,SHANG J,et al. Learning from class-imbalanced data:Review of methods and applications[J]. Expert systems with applications,2016,73:220-239.
[21]LóPEZ V,FERNáNDEZ A,GARCíA S,et al. An insight into classification with imbalanced data:Empirical results and current trends on using data intrinsic characteristics[J]. Information sciences,2013,250:113-141,2013.
[22]DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of machine learning research,2006,7:1-30.