[1] MAY R M. Time delay versus stability in population models with two and three trophic levels[J]. Ecology,1973,4:315-325.
[2]YAN X P,ZHANG C H. Hopf bifurcation in a delayed Lotka-Volterra predator-prey system[J]. Nonlinear analysis:RWA,2006,9(1):114-127.
[3]贾艳丽,陈斯养. 具有时滞的Lotka-Volterra模型的Hopf分支与数值模拟[J]. 科学技术与工程,2011(5):1671-1815.
[4]吕堂红,周林华,高瑞梅. 一类四时滞互惠合作模型的稳定性及Hopf分支分析[J]. 黑龙江大学自然科学学报,2016,33(5):571-580.
[5]HU Z D,LI Z X. Stability and Hopf bifurcation analysis in a predator-prey system with two-delays[J]. Journal of biomathematics,2017,32(4):409-420.
[6]MAY R M. Models of two interacting populations,in theoretical ecology:principles and application[M]. Philadelphia,PA:Saunders,1976:78-104.
[7]LI M. Dynamics of a mutualistic model with diffusion[J]. Anal Theory Appl,2017,33:206-218.
[8]HOLLAND J N,DEANGELIS D L. A consumer-resource approach to the density-dependent population dynamics of mutualism[J]. Ecology,2010,91:1286-1295.
[9]魏章志,王良龙. 多时滞合作系统的稳定性与全局Hopf分支[J]. 大学数学,2010,27(1):80-84.
[10]HOPF E. Abzweigung einer priodischen losung von einer stationaren losung einer differential systems[J]. Ber Math Phys Sachs Akad Wiss Leipzig,1942:1-22.
[11]马知恩,周义仓. 常微分方程定性与稳定性方法[M]. 北京:科学出版社,2001.
[12]林支桂. 数学生态学导引[M]. 北京:科学出版社,2013.