|Table of Contents|

Stability and Hopf Bifurcation Analysis in a Mutualistic Model with Time-Delay(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2019年02期
Page:
65-72
Research Field:
·数学与计算机科学·
Publishing date:

Info

Title:
Stability and Hopf Bifurcation Analysis in a Mutualistic Model with Time-Delay
Author(s):
He ShunLi Mei
School of Applied Mathematics,Nanjing University of Finance and Economics,Nanjing 210023,China
Keywords:
time-delaymutualistic modelglobal stabilityHopf bifurcation
PACS:
O175.1
DOI:
10.3969/j.issn.1001-4616.2019.02.011
Abstract:
This paper considers a mutualistic model with time-delay. The boundedness of solution is proved by comparison principle when ε1ε2≠0,and sufficient conditions for the global asymptotical stability of the positive equilibrium of the model are obtained by constructing Lyapunov function. Then by using the eigenvalue theory and taking the time delay as the parameter,the existence of Hopf branch of the system is studied,and the sufficient conditions for the existence of branch value are given. Finally,numerical simulations are given to verify the correctness of the theory.

References:

[1] MAY R M. Time delay versus stability in population models with two and three trophic levels[J]. Ecology,1973,4:315-325.
[2]YAN X P,ZHANG C H. Hopf bifurcation in a delayed Lotka-Volterra predator-prey system[J]. Nonlinear analysis:RWA,2006,9(1):114-127.
[3]贾艳丽,陈斯养. 具有时滞的Lotka-Volterra模型的Hopf分支与数值模拟[J]. 科学技术与工程,2011(5):1671-1815.
[4]吕堂红,周林华,高瑞梅. 一类四时滞互惠合作模型的稳定性及Hopf分支分析[J]. 黑龙江大学自然科学学报,2016,33(5):571-580.
[5]HU Z D,LI Z X. Stability and Hopf bifurcation analysis in a predator-prey system with two-delays[J]. Journal of biomathematics,2017,32(4):409-420.
[6]MAY R M. Models of two interacting populations,in theoretical ecology:principles and application[M]. Philadelphia,PA:Saunders,1976:78-104.
[7]LI M. Dynamics of a mutualistic model with diffusion[J]. Anal Theory Appl,2017,33:206-218.
[8]HOLLAND J N,DEANGELIS D L. A consumer-resource approach to the density-dependent population dynamics of mutualism[J]. Ecology,2010,91:1286-1295.
[9]魏章志,王良龙. 多时滞合作系统的稳定性与全局Hopf分支[J]. 大学数学,2010,27(1):80-84.
[10]HOPF E. Abzweigung einer priodischen losung von einer stationaren losung einer differential systems[J]. Ber Math Phys Sachs Akad Wiss Leipzig,1942:1-22.
[11]马知恩,周义仓. 常微分方程定性与稳定性方法[M]. 北京:科学出版社,2001.
[12]林支桂. 数学生态学导引[M]. 北京:科学出版社,2013.

Memo

Memo:
-
Last Update: 2019-06-30