|Table of Contents|

Numerical Studies on 2D Magnetic Particles ImagingBased on Optimized System Matrix(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2019年02期
Page:
73-80
Research Field:
·物理学·
Publishing date:

Info

Title:
Numerical Studies on 2D Magnetic Particles ImagingBased on Optimized System Matrix
Author(s):
Gao YaGuo GepuMa Qingyu
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
Keywords:
magnetic particle imaging(MPI)superparamagnetismfast Fourier transformsystem matrixspatial encoding
PACS:
O441.3
DOI:
10.3969/j.issn.1001-4616.2019.02.012
Abstract:
Magnetic particle imaging(MPI)is a new medical imaging technology,which uses the nonlinear re-magnetization behavior of superparamagnetic nanoparticles to change magnetic field to determine their distribution. The key issues of the real-time PMI include the improvement of reconstruction speed and the reduction of storage requirement and computation complexity. By combining the nonlinear magnetization response characteristics of magnetic particles with the law of electromagnetic induction,the voltage signal was obtained. Furthermore,by considering the sensitivity of the receiving coil,the voltage signal shows a linear relationship with the concentration of magnetic particles. The fast Fourier transform is used to analyze the influence of the spectrum characteristics and the frequency resolution on the system matrix. Moreover,the influence of coding number,frequency component selection of the system function and the receiving direction on image reconstruction is studied systematically. It is proved that,the spatial structure of the system function can be optimized by selecting high frequency signals. The imaging accuracy and quality are improved by increasing the number of the frequency component and reconstructing the matrix using signals in different directions. More frequency components can be used to construct linearly independent equations to obtain a unique solution,and the system matrix reorganized by signals with different receiving directions has a richer spatial structure,which plays an important guiding role in MPI technology and exhibits promising prospect in new biomedical imaging.

References:

[1] ZHANG L,GU F X,CHAN J M,et al. Nanoparticles in medicine:therapeutic applications and developments[J]. Clin Pharmacol Ther,2008,83(5):761-769.
[2]IANOS R,TACULESCU A,PACURARIU C,et al. Solution combustion synthesis and characterization of magnetite,Fe3O4,nanopowders[J]. J Am Ceram Soc,2012,95:2236-2240.
[3]ABBASI A Z,GUTIERREZ L,DEL L L,et al. Magnetic capsules for NMR imaging:effect of magnetic nanoparticles spatial distribution and aggregation[J]. J Phys Chem,2011,115:6257-6264.
[4]GOODWILL P,TAMRAZIAN A,CROFT L,et al. Ferrohydrodynamic relaxometry for magnetic particle imaging[J]. Appl Phys Lett,2011,98:262502.
[5]GLEICH B,WEIZENECKER J. Tomographic imaging using the nonlinear response of magnetic particles[J]. Nature,2005,435(7046):1214-1217.
[6]WEIZENECKER J,BORGERT J,GLEICH B. A simulation study on the resolution and sensitivity of magnetic particle imaging[J]. Phys Med Biol,2007,52:6363-6374.
[7]KNOPP T,SATTEL T,BIEDERER S,et al. Model-based reconstruction for magnetic particle imaging[J]. IEEE Trans Med Imaging,2010,29(1):12-18.
[8]PANAGIOTOPOULOS N,DUSCHKA R,AHLBORG M,et al. Magnetic particle imaging:current developments and future directions[J]. Int J Nanomedicine,2015,10:3097-3114.
[9]BORGERT J,SCHMIDT J D,SCHMALE I,et al. Fundamentals and applications of magnetic particle imaging[J]. J Cardiovasc Comput Tomogr,2012,6(3):149-153.
[10]GOODWILL P,SARITAS E U,CROFT L R,et al. X-Space MPI:magnetic nanoparticles for safe medical imaging[J]. Adv Mater,2012,24(28):3870-3877.
[11]GLEICH B,WEIZENECKER J,BORGERT J. Experimental results on fast 2D-encoded magnetic particle imaging[J]. Phys Med Biol,2008,53(6):81-84.
[12]KAETHNER C,AHLBORG M,KNOPP T,et al. Efficient gradient field generation providing a multi-dimensional arbitrary shifted field-free point for magnetic particle imaging[J]. J Appl Phys,2014,115(4):0449101-0449105.
[13]VOGEL P,RUCKERT M A,KLAUER P,et al. Traveling wave magnetic particle imaging[J]. IEEE Trans Med Imaging,2014,33(2):400-407.
[14]KNOPP T,BIEDERER S,SATTEL T F,et al. Trajectory analysis for magnetic particle imaging[J]. Phys Med Biol,2008,54:385-397.
[15]WEIZENECKER J,GLEICH B,RAHMER J,et al. Three-dimensional real-time in vivo magnetic particle imaging[J]. Phys Med Biol,2009,54:1-10.
[16]KNOPP T,BIEDERER S,SATTEL T F,et al. 2D model-based reconstruction for magnetic particle imaging[J]. Med Phys,2010,37(2):485-491.
[17]KNOPP T,SATTEL T F,BIEDERER S,et al. Field-free line formation in a magnetic field[J]. J Phys Math Theor,2010,43(1):012002.
[18]ERBE M,WEBER M,SATTEL T F,et al. Experimental validation of an assembly of optimized curved rectangular coils for the use in dynamic field free line magnetic particle imaging[J]. Curr Med Imaging Rev,2013,9(2):89-95.
[19]GOODWILL P,LU K,ZHENG B,et al. An X-Space magnetic particle imaging scanner[J]. Rev Sci Instrum,2012,83:033708.
[20]TAY Z,GOODWILL P,HENSLEY D,et al. A high-throughput,arbitrary-waveform,MPI spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization[J]. Scientific reports,2016,6(1):34180.
[21]谢迪,张朴,程晶晶. 基于磁性粒子成像技术的一维建模仿真研究[J]. 计算机仿真,2013,30(9):410-414.
[22]张金瑶. 磁粒子成像信号分析与系统研制[D]. 西安:西安电子科技大学,2014.
[23]RAHMER J,WEIZENECKER J,GLEICH B,et al. Signal encoding in magnetic particle imaging:properties of the system function[J]. BMC Med Imaging,2009,9:4-8.
[24]KNOPP T,RAHMER J,SATTEL T F,et al. Weighted iterative reconstruction for magnetic particle imaging[J]. Phys Med Biol,2010,55(6):1577-1589.

Memo

Memo:
-
Last Update: 2019-06-30