[1] 周志华. 机器学习[M]. 北京:清华大学出版社,2016.
[2]JENKINSON J,GRIGORYAN A M,HAJINOROOZI M,et al. Machine learning and image processing in astronomy with sparse data sets[C]//2014 IEEE International Conference on Systems,Man,and Cybernetics,SMC 2014. San Diego,CA,USA,2014:200-203.
[3]DHILLON I S,MODHA D S. Concept decompositions for large sparse text data using clustering[J]. Machine learning,2001,42(1/2):143-175.
[4]YANG C H,LIU F,HUANG J,et al. Auto-classification of retinal diseases in the limit of sparse data using a two-streams machine learning model[J]. CoRR,2018,abs/1808.05754.
[5]ANTHOLZER S,HALTMEIER M,SCHWAB J. Deep learning for photoacoustic tomography from sparse data[J]. CoRR,2017,abs/1704.04587.
[6]HAN S,DALLY B. Efficient methods and hardware for deep learning[D]. Stanford:Stanford University,2017.
[7]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. CoRR,2014,abs/1409.1556.
[8]SERCU T,PUHRSCH C,KINGSBURY B,et al. Very deep multilingual convolutional neural networks for LVCSR[J]. CoRR,2015,abs/1509.08967.
[9]SUN Y,LIANG D,WANG X G,et al. Deepid3:face recognition with very deep neural networks[J]. CoRR,2015,abs/1502.00873.
[10]DUQUE A B,SANTOS L L J,MACêDO D,et al. Squeezed very deep convolutional neural networks for text classification[J]. CoRR,2019,abs/1901.09821.
[11]THOM M. Sparse neural networks[D]. Ulm:University of Ulm,2015.
[12]LIU B Y,WANG M,FOROOSH H,et al. Sparse convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.[S.l.:s.n.]. Boston,MA,USA,2015:806-814.
[13]NARANG S,ELSEN E,DIAMOS G,et al. Exploring sparsity in recurrent neural networks[J]. arXiv preprint arXiv:1704.05119,2017.
[14]XU L,CHOY C,LI Y W. Deep sparse rectifier neural networks for speech denoising[C]//IEEE International Workshop on Acoustic Signal Enhancement,IWAENC 2016. Xi’an,China,2016:1-5.
[15]SALDANHA L B,BOBDA C. Sparsely connected neural networks in FPGA for handwritten digit recognition[C]//17th International Symposium on Quality Electronic Design,ISQED 2016. Santa Clara,CA,USA,2016:113-117.
[16]NG A. Sparse autoencoder[J]. CS294A lecture notes,2011,72(2011):1-19.
[17]ZHANG Y D,HOU X X,Lü Y D,et al. Sparse autoencoder based deep neural network for voxelwise detection of cerebral microbleed[C]//22nd IEEE International Conference on Parallel and Distributed Systems,ICPADS 2016. Wuhan,China,2016:1229-1232.
[18]KORDMAHALLEH M M,SEFIDMAZGI M G,HOMAIFAR A. A sparse recurrent neural network for trajectory prediction of atlantic hurricanes[C]//Proceedings of the 2016 on Genetic and Evolutionary Computation Conference. Denver,CO,USA,2016:957-964.
[19]ZHANG S T,DU Z D,ZHANG L,et al. Cambricon-x:An accelerator for sparse neural networks[C]//49th Annual IEEE/ACM International Symposium on Microarchitecture,MICRO 2016. Taipei,China,2016:20:1-20.
[20]Open neural network exchange(onnx)model zoo[EB/OL]. [2019-03-01]. https://github.com/onnx/models.
[21]MOCANU D C,MOCANU E,STONE P,et al. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science[J]. Nature communications,2018,9(1):2383-2395.
[22]KEPNER J,GADEPALLY V,JANANTHAN H,et al. Sparse deep neural network exact solutions[C]//2018 IEEE High Performance Extreme Computing Conference,HPEC 2018. Waltham,MA,USA,2018:1-8.
[23]LIU L,DENG L,HU X,et al. Dynamic sparse graph for efficient deep learning[J]. CoRR,2018,abs/1810.00859.
[24]CHICKERING D M,HECKERMAN D. Fast learning from sparse data[J]. CoRR,2013,abs/1301.6685.