[1] KAUFMAN Y J,DIDIER T,OLIVIER B. A satellite view of aerosols in the climate system[J]. Nature,2002,419:215-233.
[2]CHAN C,YAO X. Air pollution in mega cities in China[J]. Atmospheric environment,2008,42(1):1-12.
[3]张西雅,扈海波. 基于多源数据的北京地区PM2.5暴露风险评估[J]. 北京大学学报(自然科学版),2018,54(5):1103-1113.
[4]JIN Q,FANG Y,WEN B,et al. Spatio-temporal variations of pm2.5 emission in china from 2005 to 2014[J]. Chemosphere,2014,183:429-436.
[5]Van DONKELAAR A,MARTIN R V,BRAUER M,et al. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate[J]. Environmental health perspectives,2015,123(2):135-143.
[6]FANG C L,WANG Z B,XU G. Spatial-temporal characteristics of pm2.5 in china:A city level perspective analysis[J]. Journal of geographical sciences,2016,26:1519-1532.
[7]LIM S S,VOS T,FLAXMAN A D,et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions,1990-2010:a systematic analysis for the Global Burden of Disease Study 2010[J]. The lancet,2012,380:2224-2260.
[8]CHEN R,WANG X,MENG X,et al. Communicating air pollution-related health risks to the public:an application of the air quality health index in Shanghai,China[J]. Environment international,2013,1(5):168-173.
[9]CHEN J,LU J,AVISE J C,et al. Seasonal modeling of PM 2.5 in California’s San Joaquin Valley[J]. Atmospheric environment,2014,92:182-190.
[10]WU Q Z,SHI A,LI Y,et a1. Air quality forecast of PMl0 in Beijing with community multi-scale air quality modeling(CMAQ)system:emission and improvement[J]. Geoscientific model development,2014,7(5):2243-2259.
[11]邓涛,吴兑,邓雪娇,等. 珠三角空气质量暨光化学烟雾数值预报系统[J]. 环境科学与技术,2013(4):62-68.
[12]周广强,谢英,吴剑斌,等. 基于WRF-Chem模式的华东区域PM2.5预报及偏差原因[J]. 中国环境科学,2016,36(8):2251-2259.
[13]高怡,张美根. 2013年1月华北地区重雾霾过程及其成因的模拟分析[J]. 气候与环境研究,2014,19(2):140-152.
[14]张恒德,咸云浩,谢永华,等. 基于时间序列分析和卡尔曼滤波的霾预报技术[J]. 计算机应用,2017,37(11):279-284.
[15]赵秀娟,徐敬,张自银,等. 北京区域环境气象数值预报系统及PM2.5预报检验[J]. 应用气象学报,2016,27(2):160-172.
[16]WANG T J,JIANG F,DENG J J,et al. Urban air quality and regional haze weather forecast for Yangtze River Delta[J]. Atmospheric environment,2012,58(15):70-83.
[17]刘杰,杨鹏,吕文生,等. 模糊时序与支持向量机建模相结合的PM2.5质量浓度预测[J]. 北京科技大学学报,2014,36(12):1694-1703.
[18]李龙,马磊,贺建峰,等. 基于特征向量的最小二乘支持向量机PM2.5浓度预测模型[J]. 计算机应用,2014,34(8):2212-2216.
[19]VOUKANTSIS D,KARATZAS K,KUKKONEN J,et al. Inter-comparison of air quality data using principal component analysis,and forecasting of PM10 and PM2.5 concentrations using artificial neural networks,in Thessaloniki and Helsinki[J]. Science of the total environment,2011,409(7):1266-1276.
[20]MISHRA D,GOLYAL P,UPADHYAY A. Artificial intelligence based approach to fore-cast PM2.5 during haze episodes:a case study of Delhi,India[J]. Atmospheric environment,2015,120:239-248.
[21]LI J D,CHANG J Z,LEI M M. Dynamic forecasting model of short-term PM2.5 concentration based on machine learning[J]. Journal of computer applications,2017,37(11):3057-3063.
[22]JIA C Z,FANG D,YE Y C,et al. Long short-term memory-fully connected(LSTM-FC)neural network for PM2.5 concentration prediction[J]. Chemosphere,2019,220:486-492.
[23]ZHENG Y,YI X,LI M,et al. Forecasting fine-grained air quality based on big data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney,2015.
[24]YI X,ZHENG Y,ZHANG J,et al. ST-MVL:filling missing values in geo-sensory time series data[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. Palo Alto:AAAI Press,2016.
[25]VIDUSHI C,ANAND D,VIJAYANAND K,et al. Time Series Based LSTM Model to Predict Air Pollutant’s Concentration for Prominent Cities in India[C]//Proceedings of the first International Workshop on Utility-Driven Mining. London,2018.
[26]WEBER S A,INSAF T Z,HALL E S,et al. Assessing the impact of fine particulate matter(PM2.5)on respiratory-cardiovascular chronic diseases in the New York city metropolitan area using hierarchical bayesian model estimates[J]. Environment research,2016,151:399-409.
[27]CHIOU J H,PING H K. A Deep CNN-LSTM Model for Particulate Matter(PM2.5)Forecasting in Smart Cities[J]. Sensors,2018,18(7):2220-2241.
[28]CONG W,SHU L,XIAO J Y,et al. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction[J]. Science of the total environment,2019,654:1091-1099.
[29]PING W S,JIA W C,JEN W H. Adaptive deep learning-based air quality prediction model using the most relevant spatial-temporal relations[J]. IEEE access 6,neurocomputing,2018(6):38186-38200.
[30]CHU D A,KAUFMAN Y J,ZIBORDI G,et al. Global monitoring of air pollution over land from the Earth observing system-terra moderate resolution imaging spectroradiometer(MODIS)[J]. Geophysis research,2003,108(D21):4661-4667.
[31]KOELEMEIJER R,HOMAN C,MATTHIJSEN J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe[J]. Atmosphere environment,2013,40(27):5304-5315.
[32]SAIDE P E,CARMICHAEL G R,SPAK S N,et al. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model[J]. Atmosphere environment,2011,45(16):2769-2780.
[33]SU X,GOUGH W,SHEN Q. Correlation of pm 2.5 and meteorological variables in Ontario cities:statistical downscaling method coupled with artificial neural network[C]//Proceedings of the 24th International Conference on Modeling,Monitoring and Management of Air Pollution(AIR 2016). Crete,2016.
[34]LIANG Z,GUANG Z,PEI Y S. Learning Spatiotemporal Features using 3DCNN and Convolutional LSTM for Gesture Recognition[C]//Proceedings of the International Conference on Computer Vision. Venice,2017.
[35]DU T,BOURDEV L,FERGUS R,et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the International Conference on Computer Vision. Santiago,2015.
[36]STUART G,ELIE B,RENE D. Neural networks and the bias/variance dilemma[J]. Neural computer,1992,41(1):1-58.
[37]WIKRAM R,PAVAN Y,SHRESTHA M. Deep air:forecasting air pollution in Beijing,China.[C]//Proceedings of IEEE International Conference on Computer Vision. New York:IEEE Press,2017:1-9.
[38]赵文芳,王京丽,尚敏,等. 基于粒子群优化和支持向量机的花粉浓度预测模型[J]. 计算机应用,2019,39(1):98-104.