[1] 罗笑玲,黄绍锋,欧阳天优,等. 基于多分类器集成的图像文字识别技术及其应用研究[J]. 软件,2015,36(3):98-102.
[2]全志楠,林家骏. 文本无关的小样本手写汉字笔迹鉴别方法[J]. 华东理工大学学报(自然科学版),2018,44(6):882-886.
[3]刘文壮,李均利. 一种基于隐马尔可夫模型的脱机手写汉字识别方法[J]. 系统仿真技术及应用,2009,11:774-777.
[4]GUOHONG LI,SHI P. Copleteness analysis of feature points on strokes of handwriting Chinese characters[J]. IEEE Trans on copmuter engineering,2010,32(6):14-16.
[5]LIU W Z,LI J L. A method for off-line handwritten Chinese character recognition based on hidden Markov model[J]. CCSSTA,2009,11:774-777.
[6]PRASAD J R,KULKARNI U V,PRASAD R S. Offline handwritten character recognition of gujrati script using pattern matching[C]//International Conference on Anti-counterfeiting. Hong Kong:IEEE Press,2009:611-615.
[7]闫喜亮,王黎明. 卷积深度神经网络的手写汉字识别系统[J]. 计算机工程与应用,2017,53(10):246-250.
[8]MAHPOD S,KELLER Y. Auto-ML deep learning for rashi scripts OCR[EB/OL]. [2018-11-03]. https://arxiv.org/abs/1811.01290.
[9]SANG G L,YUNSICK S,YEON G K,et al. Variations of AlexNet and GoogLeNet to improve Korean character recognition performance[J]. Journal of information processing systems,2018,14(1):205-217.
[10]CONG K N,CUONG T N,NAKAGAWA M. Tens of thousands of nom character recognition by deep convolution neural networks[C]//The 4th International Workshop on Historical Document Imaging and Processing. Kyoto,2017.
[11]HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//The IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas:IEEE,2016:770-778.
[12]SUNDERMEYER M,NEY H,SCHLüTER R. From feedforward to recurrent LSTM neural networks for language modeling[J]. IEEE/ACM transactions on audio speech & language processing,2015,23(3):517-529.
[13]GARLA V N,BRANDT C. Ontology-guided feature engineering for clinical text classification[J]. Journal of biomedical informatics,2012,45(5):992-998.
[14]JORDAN M I,MITCHELL T M. Machine learning:trends,perspectives,and prospects[J]. Science,2015,349(6245):255-260.
[15]DENG L,YU D. Deep learning:methods and applications[J]. Foundations & trends in signal processing,2014,7(3):197-387.
[16]WOJCIECH Z,ILYA S,ORIOL V. Recurrent neural network regularization[EB/OL]. [2015-02-19]. https://arxiv.org/abs/1409.2329.
[17]ZHONG Z,JIN L,XIE Z. High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps[EB/OL]. [2015-05-19]. https://arxiv.org/abs/1505.04925.
[18]HE K,ZHANG X,REN S,et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[EB/OL]. [2015-02-06]. https://arxiv.org/abs/1502.01852.
[19]KALAYEH M M,GONG B,SHAH M. Improving facial attribute prediction using semantic segmentation[C]//The IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,2017.
[20]MARTIN J,SAQIB S B,ANDREAS D. Transcription free LSTM OCR model evaluation[C]//International Conference on Frontiers in Handwriting Recognition(ICFHR). Niagara Falls,2018.
[21]LIU W,WANG Q,ZHU Y,et al. GRU:optimization of NPI performance[EB/OL]. [2018-10-19]. https://link.springer.com/article/10.1007/s11227-018-2634-9.
[22]ALMAZAN J,GORDO A,FORNES A,et al. Word spotting and recognition with embedded attributes[J]. IEEE transactions on pattern analysis and machine intelligence,2014,36(12):2552-2566.
[23]RODRIGUEZ S J A,GORDO A,PERRONNIN F. Label embedding:a frugal baseline for text recognition[J]. International journal of computer vision,2015,113(3):193-207.
[24]杨丽吴,雨茜,王俊丽,等. 循环神经网络研究综述[J]. 计算机应用,2018,38(S2):1-6,26.
[25]KOZIELSKI M,DOETSCH P,HAMDANI M,et al. Multilingual off-line handwriting recognition in real-world images[C]//International Workshop on Document Analysis Systems. Tours:IEEE,2014:121-125.
[26]郭军,蔺志青,张洪刚. 一个新的脱机手写汉字数据库模型及其应用[J]. 电子学报,2000,28(5):115-116.
[27]王瀚文. 深度学习在嵌入式设备上的应用综述[J]. 应用能源技术,2018,247(7):54-56.