[1] 张维迎. 博弈论与信息经济学[M]. 上海:上海人民出版社,2004.
[2]张加佳. 非完全信息机器博弈中风险及对手模型的研究[D]. 哈尔滨:哈尔滨工业大学,2015.
[3]VON N J,MORGENSTERN O. Theory of games and economic behavior[M]. Princton:Princeton University Press,1994.
[4]SHANNON C E. Programming a computer for playing chess[M]//Computer chess compendium. New York,USA:Springer,1988:2-13.
[5]ROIZEN I,PEARL J. A minimax algorithm better than alpha-beta?Yes and No[J]. Artificial intelligence,1983,21(1/2):199-220.
[6]FULLER S H,GASCHNIG J G,GILLOGLY J J. Analysis of the alpha-beta pruning algorithm[M]. USA:Carnegie-Mellon University,1973.
[7]GELLY S,SILVER D. Combining online and offline knowledge in UTC[C]//Proceedings of the 24th International Conference on Machine Learning. New York,USA:ACM,2007:273-280.
[8]CHASLOT G,BAKKES E,SZITA I. Monte-Carlo tree search:a new framework for game AI[J]. In Proceedings of AIIDEC-08,2008,4(2):216-217.
[9]SILVER D,HUANG A,MADDISON C J,et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature,2016,529(7587):484-489.
[10]刘洋. 点格棋博弈中UCT算法的研究与实现[D]. 安徽:安徽大学,2016.
[11]SILVER D,HUBERT T,SCHRITTWIESER J,et al. A general reinforcement learning algorithm that masters chess,shogi,and Go through self-play[J]. Science,2018,362(6419):1140-1144.
[12]SILVER D,SCHRITTWIESER J,SIMONYAN K,et al. Mastering the game of Go without human knowledge[J]. Nature,2017,550(7676):354-359.
[13]BROWN N,SANDHOLM T. Superhuman AI for heads-up no-limit poker:Libratus beats top professionals[J]. Science,2018,359(6374):418-424.
[14]DARSE B,AARON D,JONATHAN S,et al. The challenge of poker[J]. Artificial intelligence,2002,134:201-240.
[15]STURTEVANT N. Current challenges in multi-player game search[C]//International Conference on Computers and Games. Berlin,Heidelberg:Springer,2004:285-300.
[16]GELLY S,SILVER D. Monte-Carlo tree search and rapid action value estimation in computer Go[J]. Artificial intelligence,2011,175(11):1856-1875.
[17]SCHADD F C. Monte-Carlo search techniques in the modern board game thurn and taxis[D]. Netherlands:Maastricht University,2009.
[18]COULOM R. Effcient selectivity and backup operators in Monte-Carlo tree search[C]//5th Int Conf Comput and Gamesn Turin. Italy:Natural Comput,2006:72-83.
[19]GELLY S,WANG Y. Exploration exploitation in Go:UCT for Monte-Carlo go[C]//NIPS:Neural Information Processing Systems Conference On-line trading of Exploration and Exploitation Workshop. Canada:ffhal-00115330f,2006.