[1] 刘擎超. 基于集成学习的交通状态预报方法研究[D]. 南京:东南大学,2015.
[2]姚智胜. 基于实时数据的道路网短时交通流预测理论与方法研究[D]. 北京:北京交通大学,2007.
[3]赵亚萍,张和生,杨军,等. 基于最小二乘支持向量机的交通流量预测模型[J]. 北京交通大学学报(自然科学版),2011,35(2):114-117.
[4]欧阳俊. 基于多核混合支持向量机的城市短时交通预测[D]. 长沙:中南大学,2011.
[5]孙占全,潘景山,张赞军,等. 基于主成分分析与支持向量机结合的交通流预测[J]. 公路交通科技,2009,26(5):127-131.
[6]樊娜,赵祥模,戴明,等. 短时交通流预测模型[J]. 交通运输工程学报,2012,12(4):114-119.
[7]刘燕. 城市道路交通流状态辨识及决策方法研究[D]. 合肥:合肥工业大学,2011.
[8]杨兆升,王媛,管青. 基于支持向量机方法的短时交通流量预测方法[J]. 吉林大学学报(工学版),2006,36(6):881-884.
[9]韦凌翔,陈红,王永岗,等. 短时交通流量预测方法[J]. 山东交通学院学报,2017,25(3):22-29.
[10]YAN H,YE Q,ZHANG T,et al. Least squares twin bounded support vector machines based on L1-norm distance metric for classification[J]. Pattern recognition,2017,74:434-447.
[11]YAN H,YE Q,ZHANG T,et al. L1-norm GEPSVM classifier based on an effective iterative algorithm for classification[J]. Neural processing letters,2017,4:1-26.
[12]YE Q,YANG X,GAO S,et al. L1-norm distance minimization based fast robust twin support vector k-plane clustering[J]. IEEE transactions on neural networks and learning systems,2018,29(9):4494-4503.
[13]YAN R,YE Q,ZHANG L,et al. A feature selection method for projection twin support vector machine[J]. Neural processing letters,2018,47(1):21-38.
[14]MANGASARIAN O L,WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE transactions on pattern analysis and machine intelligence,2006,28(1):69-74.
[15]SHAO Y H,ZHANG C H,WANG X B,et al. Improvements on twin support vector machines[J]. IEEE transactions on neural networks,2011,22(6):962-968.
[16]CARRASCO M,L PEZ J,MALDONADO S. A multi-class SVM approach based on the L1-norm minimization of the distances between the reduced convex hulls[J]. Pattern recognition,2015,48(5):1598-1607.
[17]TOMAR D,AGARWAL S. Multiclass least squares twin support vector machine for pattern classification[J]. International journal of database theory and application,2015,8(6):285-302.
[18]XIAO C,NIE F,HUANG H,et al. Multi-class L2,1-norm support vector machine[C]//Proceedings of the IEEE International Conference on Data Mining. Vancouver,Canada:IEEE,2012:91-100.
[19]NIE F,WANG X,HUANG H. Multiclass capped Lp-norm SVM for robust classifications[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco,USA,2017:1-7.
[20]DING S,ZHAO X,ZHANG J,et al. A review on multi-class TWSVM[J]. Artificial intelligence,2017,2:1-27.
[21]BRERETON R G,LLOYD G R. Support vector machines for classification and regression[J]. Analyst,2010,135(2):230-267.
[22]HUANG W,SHEN L. Weighted support vector regression algorithm based on data description[C]//Proceedings of the Isecs International Colloquium on Computing,Communication,Control,and Management. USA:IEEE Computer Society,Computer Engineering and Applications,2008:250-254.
[23]CHE J X. Support vector regression based on optimal training subset and adaptive particle swarm optimization algorithm[J]. Applied soft computing,2013,13(8):3473-3481.
[24]DIVYA,AGARWAL S. Weighted support vector regression approach for remote healthcare monitoring[C]//Proceedings of the International Conference on Recent Trends in Information Technology. Piscataway:IEEE Press,2011:969-974.