[1] CLOUGH R W,PENZIEN T. Dynamics of Structures[M]. 2nd Ed. New York:McGraw-Hill,Inc,1993.
[2]AJIT K M,SINGH S J. Deformation of Elastic Solids[M]. New York:Prentice-Hall,1991.
[3]LAI J,HUANG J,CHEN C. Vibration analysis of plane elasticity problems by the C0-continuous time stepping finite element method[J]. Appl Numer Math,2009,59:905-919.
[4]NEWMARK N M. A method of computation for structural dynamics[J]. J Eng Mech Div,1959,85:67-94.
[5]HUGHES T J R,HULBERT G. Space-time finite element methods for elastodynamics:formulations and error estimates[J]. Comput Methods Appl Mech Eng,1988,66:339-363.
[6]BABUKA I,SURI M. Locking effects in the finite element approximation of elasticity problems[J]. Numer Math,1992,62:439-463.
[7]FALK R. Nonconforming finite element methods for the equations of linear elasticity[J]. Math Comput,1991,57:529-529.
[8]VOGELIUS M. An analysis of the p-version of the finite element method for nearly incompressible materials[J]. Numer Math,1983,41:39-53.
[9]STENBERG R. A family of mixed finite elements for the elasticity problem[J]. Numer Math,1988,53:513-538.
[10]HUANG X,HUANG J. The compact discontinuous Galerkin method for nearly incompressible linear elasticity[J]. J Sci Comput,2013,56:291-318.
[11]CHEN G,XIE X. A robust weak Galerkin finite element method for linear elasticity with strong symmetric stresses[J]. Comput Methods Appl Math,2016,16:389-408.
[12]GUO Y,HUANG J. A robust finite element method for elastic vibration problems[J]. Comput Math Appl Mat,accepted.
[13]CROUZEIX M,RAVIART P A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I[J]. RAIRO Anal Numér,1973,7:33-75.
[14]ADAMS R A. Sobolev Spaces[M]. New York:Academic Press,1975.
[15]BRENNER S C,SCOTT L R. The Mathematical Theory of Finite Element Methods[M]. 2nd Ed. Berlin:Springer-Verlag,2002.
[16]郭玉玲. 几类二阶发展方程的高效算法及误差分析[D]. 上海:上海交通大学,2019.