|Table of Contents|

Two-Factor Markov-Modulated StochasticVolatility Models for Option Pricing(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2019年04期
Page:
31-38
Research Field:
·数学与计算机科学·
Publishing date:

Info

Title:
Two-Factor Markov-Modulated StochasticVolatility Models for Option Pricing
Author(s):
Liu XueruLi MeihongTian FanLiu Guoxiang
School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
Keywords:
option pricingregime switchingEsscher transformtwo-factor stochastic volatilitymarkov chain model
PACS:
O211.9
DOI:
10.3969/j.issn.1001-4616.2019.04.005
Abstract:
We consider the option pricing problem when the risky underlying assets are driven by a two-factor Morkov-modulated stochastic volatility model,with the first volatility factor driven by the Cox-Ingersoll-Ross process and the second volatility factor driven by a continuous-time hidden Markov process. The states of the Markov process can be interpreted as the unobservable states of the economy. The market described by a two-factor Markov-modulated stochastic volatility model is incomplete in general and,hence,the martingale measure is not unique. We adopt the regime switching Esscher transform to determine an equivalent martingale pricing measure. We consider the valuation of the European and American options. A system of coupled partial differential integral equations satisfied by the European option prices in derived. We also derive a decomposition result for an American put option into its European counterpart and early exercise premium. Finally,numerical illustrations are given.

References:

[1] BLACK F,SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of political economy,1973,81:637-659.
[2]MERTON R C. The theory of rational option pricing[J]. Bell journal of economics and management science,1973,4:141-183.
[3]ELLIOTT R J,AGGOUN L,MOORE J B. Hidden Markov models:estimation and control[M]. Berlin,Heidelberg,New York:Springer,1994.
[4]ELLIOTT R J,KOPP P E. Mathematics of financial markets[M]. Berlin,Heidelberg,New York:Springer,1999.
[5]ELLIOTT R J,HINZ J. Portfolio analysis,hidden Markov models and chart analysis by PF-Diagrams[J]. International journal of theoretical and applied finance,2002,5:385-399.
[6]F?LLMER H,SONDERMANN D. Hedging of contingent claims under incomplete information[C]//Contributions to Mathematical Economics. Amsterdam:North Holland,1986:205-223.
[7]F?LLMER H,SCHWEIZER M. Hedging of contingent claims under incomplete information[C]//Applied Stochastic Analysis. London:Gordon and Breach,1991:89-414.
[8]GERBER H,SHIU E S W. Option pricing by Esscher transforms(with discussions)[J]. Transaction of the society of autuaries,1994,46:99-191.
[9]YANG H. The Esscher transform[C]//Encyclopedia of Actuarial Science. New York:Wiley,2004:617-621.
[10]BüHLMANN H,DELBAEN F,EMBRECHTS P,et al. No-arbitrage,change of measure and conditional esscher transform[J]. CWI quarterly,1996,9(4):291-317.
[11]ELLIOTT R J,CHAN L L,SIU T K. Option pricing and Esscher transform under regime switching[J]. Annals of finance,2005,1(4):423-432.
[12]BUFFINGTON J,ELLIOTT R J. Regime switching and European options[C]//Stochastic Theory and Control,Proceedings of a Workshop. Springer Verlag,2002:73-81.
[13]BUFFINGTON J,ELLIOTT R J. American options with regime switching[J]. International journal of theoretical and applied finance,2002,5:497-514.
[14]BüHLMANN H,DELBAEN F,EMBRECHTS P,et al. On Esscher transforms in discrete finance models[J]. ASTIN bulletin,1998,28(2):171-186.
[15]BOYLE P P. Options:a Monte Carlo approach[J]. Journal of financial economics,1977,4(4):323-338.

Memo

Memo:
-
Last Update: 2019-12-31