|Table of Contents|

ConvergenceRateAnalysisofAnOperatorSplittingMethodforSolvingaClassofVariationalInequalityProblems(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2020年01期
Page:
5-12
Research Field:
·数学·
Publishing date:

Info

Title:
ConvergenceRateAnalysisofAnOperatorSplittingMethodforSolvingaClassofVariationalInequalityProblems
Author(s):
GeZhili1CaiXingju2ZhangXin3
(1.BasicSciencesDepartment,NanjingPolytechnicInstitute,Nanjing210048,China)(2.SchoolofMathematicalSciences,NanjingNormalUniversity,Nanjing210023,China)(3.SchoolofArtsandScience,SuqianCollege,Suqian223800,China)
Keywords:
partiallyunknownmappingsmonotonevariationalinequalitiesoperatorsplittingmethodsublinearconvergencerate
PACS:
O221.4
DOI:
10.3969/j.issn.1001-4616.2020.01.002
Abstract:
Consideraclassofvariationalinequalityproblems:findingx*∈Ω,suchthatF(x*)T(x-x*)≥0,x∈Ω,whereΩRnisnonempty,closedandconvex,F=f+gisacontinuousmappingfromRntoRn,fandgaremonotonebutfisunknown.Westudyanoperatorsplittingmethodforthisclassofproblemswithavarietyofapplications.Basedonthepreviousconvergenceresults,wefurtheranalyzetheO(1/k)ando(1/k)sublinearconvergencerateinnon-ergodicsenseforthisoperatorsplittingmethod,wherekcountstheiterationnumber.Finally,numericalresultsdemonstratetheefficiencyofthealgorithm.

References:

[1]FERRISMC,PANGJS.Engineeringandeconomicapplicationsofcomplimentarityproblems[J].SIAMreview,1997,39(4):669-713.
[2]FISCHERA.SolutionofmonotonecomplementarityproblemswithlocallyLipschitzianfunctions[J].Mathematicalprogramming,1997,76(3):513-532.
[3]FACCHINEIF,PANGJS.Finite-dimensionalvariationalinequalitiesandcomplementarityproblems,VolumesIandII[M].Berlin,GER:Springer,2003.
[4]MARTINETB.Brèvecommunication.Régularisationd’inéquationsvariationnellesparapproximationssuccessives[J].RevuefrancaiseD’informatiqueetderechercheOpérationnelle,SérieRouge,1970,4(R3):154-158.
[5]ROCKAFELLARRT.Monotoneoperatorsandtheproximalpointalgorithm[J].SIAMjournaloncontroloptimization,1976,14(5):877-898.
[6]ECKSTEINJ,BERTSEKASD.OntheDouglas-Rachfordsplittingmethodandtheproximalpointalgorithmformaximalmonotoneoperators[J].Mathematicalprogramming,1992,55(1-3):293-318.
[7]VARGARS.Matrixiterativeanalysis[M].NewYork,USA:Springer,1999.
[8]HANDR,XUW,YANGH.Anoperatorsplittingmethodforvariationalinequalitieswithpartiallyunknownmappings[J].Numerischemathematik,2008,111(2):207-237.
[9]YANGH,MENGQ,LEEDH.Trial-and-errorimplementationofmarginal-costpricingonnetworksintheabsenceofdemandfunctions[J].TransportationresearchpartB:methodological,2004,38(6):477-493.
[10]STARCKJL,MURTAGHF,FADILIJM.Sparseimageandsignalprocessing,wavelets,curvelets,morphologicaldiversity[M].Cambridge,UK:CambridgeUniversityPress,2010.
[11]GEZL,HANDR,NIQ,etal.Anoperatorsplittingmethodformonotonevariationalinequalitieswithanewperturbationstrategy[J].Optimizationletters,2018,12(1):103-122.
[12]GJLERO.Ontheconvergenceoftheproximalpointalgorithmforconvexminimization[J].SIAMjournaloncontrolandoptimization,1991,29(2):403-419.
[13]NEMIROVSKIA.Prox-methodwithrateofconvergenceO(1/t)forvariationalinequalitieswithLipschitzcontinuousmonotoneoperatorsandsmoothconvex-concavesaddlepointproblems[J].SIAMjournalonoptimization,2005,15(1):229-251.
[14]HEBS,YUANXM.Onnon-ergodicconvergencerateofDouglas-Rachfordalternatingdirectionmethodofmultipliers[J].Numerischemathematik,2015,130(3):567-577.
[15]HEBS,YUANXM.OntheO(1/n)forvariationalinequalitieswithLipschitzcontinuousmonotoneoperatorsandsmoothconvex-concavesaddlepointproblems[J].SIAMjournalonoptimization,2005,15(1):229-251.
[14]HEBS,YUANXM.Onnon-ergodicconvergencerateofDouglas-Rachfordalternatingdirectionmethodofmultipliers[J].Numerischemathematik,2015,130(3):567-577.
[15]HEBS,YUANXM.OnthevergencerateoftheDouglas-Rachfordalternatingdirectionmethod[J].SIAMjournalonnumericalanalysis,2012,50(2):700-709.
[16]HEBS,YUANXM.OntheconvergencerateofDouglas-Rachfordoperatorsplittingmethod[J].Mathematicalprogramming,2015,153(2):715-722.
[17]KOUXP,LISJ.Onnon-ergodicconvergencerateoftheoperatorsplittingmethodforaclassofvariationalinequalities[J].Optimizationletters,2017,11(1):71-80.
[18]ZHUT,YUZG.Asimpleproofforsomeimportantpropertiesoftheprojectionmapping[J].Mathematicalinequalitiesandapplications,2004,7(3):453-456.
[19]CAIXJ,HANDR,YUANXM.OntheconvergenceofthedirectextensionofADMMforthree-blockseparableconvexminimizationmodelswithonestronglyconvexfunction[J].Computationaloptimizationandapplications,2017,66(1):39-73.

Memo

Memo:
-
Last Update: 2020-03-15