|Table of Contents|

UnderwaterObjectDetectionBasedontheClass-WeightedYOLONet(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2020年01期
Page:
129-135
Research Field:
·计算机科学与技术·
Publishing date:

Info

Title:
UnderwaterObjectDetectionBasedontheClass-WeightedYOLONet
Author(s):
ZhuShiweiHangRenlongLiuQingshan
CollegeofAutomation,NanjingUniversityofInformationScienceandTechnology,Nanjing210044,China
Keywords:
underwaterobjectYOLOclass-weightedlossdimensionadaptiveclustering
PACS:
TP391
DOI:
10.3969/j.issn.1001-4616.2020.01.019
Abstract:
Underwaterobjectsdetectionexistmanyissues,suchasblurimage,variousobjectscales,complexbackgroundandsoon.Inthispaper,weproposeaclass-weightedYOLOnetforunderwaterobjectdetection,inwhichaclass-weightedlossisdesignedtobalancesampleofdifficultysoastoacquirebettereffect.Moreover,adimensionadaptiveclusteringofobjectboxisintroducedtopromotethedetectionperformance.TheexperimentalresultsshowthattheproposedmethodoutperformstothetraditionalYOLOnet,withtheincreasingofthemAPfrom71.2%to74.1%andtherecallfrom71.1%to78.3%,inthetaskofdenseobjectdetectionwhicheveryimagenearlycontained20objects.

References:

[1]OLMOSA,TRUCCOE.Detectingman-madeobjectsinunconstrainedsubseavideos[C]//IEEEInternationalConferenceonBritishMachineVision.BritishPublisher:BMVAPress,2002:517-526.
[2]王猛,杨杰,白洪亮.基于区域分割的水下目标实时识别系统[J].计算机仿真,2005,22(8):101-105.
[3]RIZONM,HANIZAY,PUTEHS,etal.Objectdetedtionusinggeometricinvariantmoment[J].Americanjournalofappliedsciences,2006,3(6):1876-1878.
[4]张铭钧,尚云超,杨杰.基于灰度-梯度不变矩的水下目标识别系统[J].哈尔滨工程大学学报,2009,30(6):653-657.
[5]SHIHAVUDDINASM,GRACIASN,GARCIAR.Onlinesunflickerremovalusingdynamictextureprediction[C]//InternationalConferenceonComputerVisionTheoryandApplications.Barcelona,Spain,2012:161-167.
[6]GIRSHICKR,DONAHUEJ,DARREL1T,etal.Richfeaturehierarchiesforaccurateobjectdetectionandsemanticsegmentation[J].IEEEtransactionspatternanalysisandmachineintelligence,2015,38(1):142-158.
[7]RENS,HEK,GIRSHICKR,etal.Fasterr-cnn:Towardsreal-timeobjectdetectionwithregionproposalnetworks[J].IEEEtransactionsonpatternanalysisandmachineintelligence,2015,39(6):1137-1149.
[8]REDMONJ,DIVVALAS,GIRSHICKR,etal.Youonlylookonce:unified,real-timeobjectdetection[C]//IEEEConferenceonComputerVisionandPatternRecognition.LasVegas,America,2016:779-788.
[9]REDMONJ,FARHADIA.YOLO9000:Better,Faster,Stronger[C]//IEEEConferenceonComputerVisionandPatternRecognition.Hawaii,America,2017:7263-7271.
[10]LINTY,DOLLARP,GIRSHICKR,etal.Featurepyramidnetworksforobjectdetection[C]//IEEEConferenceonComputerVisionandPatternRecognition.Hawaii,America,2016:2117-2125.
[11]HEK,ZHANGX,RENS,etal.Deepresiduallearningforimagerecognition[C]//IEEEConferenceComputerVisionandPatternRecognition.LasVegas,America,2016:770-778.
[12]乔小妮,张明新,史变霞.一种基于密度的K-means算法[J].电脑开发与应用,2008,21(10):9-11.
[13]KANGK,LIH,XIAOT,etal.Objectdetectioninvideowithtubeletproposalnetworks[C]//IEEEConferenceonComputerVisionandPatternRecognition.Hawaii,America,2017:727-735.

Memo

Memo:
-
Last Update: 2020-03-15