[1] DODD R K,EILBECK J C,GIBBON J D,et al. Solitons and nonlinear wave equations[M]. New York:Academic Press,1982.
[2]DRAZIN P G,JOHNSON R S. Solitons:an introduction[M]. Cambridge:Cambridge University Press,1989.
[3]DEHGHAN M,SHOKRI A. Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions[J]. Journal of computational and applied mathematics,2009,230(2):400-410.
[4]STRAUSS W,VAZQUEZ L. Numerical solution of a nonlinear Klein-Gordon equation[J]. Journal of computational physics,1978,28(2):271-278.
[5]DEHGHAN M,GHESMATI A. Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method[J]. Computer physics communications,2010,181(4):772-786.
[6]PEKMEN B,TEZER S M. Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations[J]. Computer physics communications,2012,183(8):1702-1713.
[7]HUANG J,JU L,WU B. A fast compact time integrator method for a family of general order semilinear evolution equations[J]. Journal of computational physics,2019,393:313-336.
[8]HUANG J,JU L,WU B. A fast compact exponential time differencing method for semilinear parabolic equations with Neumann boundary conditions[J]. Applied mathematics letters,2019,94:257-265.
[9]JU L,LIU X,LENG W. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations[J]. Discrete and continuous dynamical systems. series B,2014,19(6):1667-1687.
[10]JU L,WANG Z. Exponential time differencing gauge method for incompressible viscous flows[J]. Communications in computational physics,2017,22(2):517-541.
[11]JU L,ZHANG J,ZHU L,et al. Fast explicit integration factor methods for semilinear parabolic equations[J]. Journal of scientific computing,2015,62(2):431-455.
[12]KROGSTAD S. Generalized integrating factor methods for stiff PDEs[J]. Journal of computational physics,2005,203(1):72-88.
[13]NIE Q,WAN F Y M,ZHANG Y T,et al. Compact integration factor methods in high spatial dimensions[J]. Journal of computational physics,2008,227(10):5238-5255.
[14]LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of computational physics,1992,103(1):16-42.
[15]LI M,TANG T,FORNBERG B. A compact fourth-order finite difference scheme for the steady incompressible Navier-Stokes equations. Internat[J]. International journal for numerical methods in fluids,1995,20(10):1137-1151.