|Table of Contents|

L Norm Estimation of Interpolations on the Heisenberg Group(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2020年02期
Page:
6-9
Research Field:
·数学·
Publishing date:

Info

Title:
L Norm Estimation of Interpolations on the Heisenberg Group
Author(s):
Chen Ping
School of Mathematics and Information Technology,Jiangsu Second Normal University,Nanjing 210013,China
Keywords:
Heisenberg groupinterpolationL norm estimation
PACS:
-
DOI:
10.3969/j.issn.1001-4616.2020.02.002
Abstract:
In this paper,we discuss the interpolation μt of optimal transport plan γ in the Heisenberg group(Hn,d,L2n+1)with the cost function (d(x,y))where is a strictly convex function. An interpolation is actually a kind of measure. We show that the interpolation μt is absolutely continuous with respect to the Lebsegue measure L2n+1. We also give a L norm estimation on μt. Furthermore,as a corollary of the above estimation result,we also estimate the interpolation(etS)#γε of solutions of the variational approximation problem in the Heisenberg group. The main methods we used include the L2n+1 measure contraction property of the Heisenberg group,the cyclically monotonicity in the optimal transport theory and the strictly convexity of .

References:

[1] SANTAMBROGIO F. Absolute continuity and summability of optimal transport densities:simpler proofs and new estimates[J]. Calculus of variations and partial differential equations,2009,36(3):343-354.
[2]CHAMPION T,PASCALE L D. The monge’s problem in Rd[J]. Duke mathematical journal,2011,157:551-572.
[3]陈平. Heisenberg群上最优计划的分类[J]. 江苏第二师范学院学报(自然科学版),2016,32(12):11-14.
[4]VILLANI C. Topics in optiral transportation[M]. Providence:American Mathematical Society,2003.
[5]VILLANI C. Optimal transport:old and new[M]. New York:Springer Science and Business Media,2008.
[6]陈平. 几个最优映射存在唯一性定理的统一证明[J]. 南京师大学报(自然科学版),2015,38(4):82-85.
[7]DE PASCALE L,RIGOT S. Monge’s transport problem in the Heisenberg group[J]. Advances in calculus of variations,2011,4(2):195-227.
[8]JUILLET N. Geometric inequalities and generalized ricci bounds in the heisenberg group[J]. International mathematics research notices,2009,13:2347-2373.

Memo

Memo:
-
Last Update: 2020-05-15