|Table of Contents|

Reactive Voltage Control Method Based on Smart Grid Technology(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2020年04期
Page:
9-13
Research Field:
·物理学·
Publishing date:

Info

Title:
Reactive Voltage Control Method Based on Smart Grid Technology
Author(s):
Yao HaoyangXie QiongtaoGai Zhiwu
Departmentl of Physics and Electronic Engineering,Hainan Normal University,Haikou 571158,China
Keywords:
smart gridpower systemautomatic voltage control(AVC)reactive voltage control
PACS:
TM762
DOI:
10.3969/j.issn.1001-4616.2020.04.003
Abstract:
Since on the current power grid reactive voltage control method in some parts of the country is relatively backward,the interaction between the regional power grid ability is weak,and there is the problem of poor performance of power system voltage control. We redesigned the reactive voltage control scheme of the regional power system and put forward the hierarchical control regional power grid voltage method,which can realize control of the specific regional power grid reactive voltage optimization. Based on automatic voltage control(AVC)system,the power system scheduling model is constructed. An average coordination was used to solve the minimum limit of power factor,the power system load level with the average coordinates the relationship between the change of the power factor. The optimization algorithm of electric net loss minimum proved the validation of the smart grid in the power system automatic voltage control technology. The effectiveness of the verification results show that for the regional power grid reactive voltage control,the proposed control method has high control effect.

References:

[1] 张勇军,林建熙,杨银国. 电力系统无功电压调控配合研究综述[J]. 电网技术,2012,36(3):101-106.
[2]GRAFF R. Real time application of an optimal power flow algorithm for reactive power allocation of the RWE energy control center[C]//Lorndon,UK:IEEE Colloquium on International Practices in Reactive Power Control,2010.
[3]DENZEL D,EDWIN K W,GRAF F R,et al. Optimal power flow and its real-time application at the RWE energy control centre[C]//Paris,France:International Council on Large Electric Systems,2012.
[4]王景辉. GIS技术在县域电网规划中的应用[J]. 电子科技,2013,26(8):124-125.
[5]张胜天. 基于软分区的全局电压优化控制系统设计[J]. 电力系统自动化,2014,27(8):16-20.
[6]周金辉,骆宗义,王子凌,等. 考虑AVC的含分布式光伏园区配电网无功电压控制仿真[J]. 浙江电力,2018,37(10):19-24.
[7]郭庆来,王蓓,宁文元,等. 华北电网自动电压控制与静态电压稳定预警系统应用[J]. 电力系统自动化,2008,32(5):95-98.
[8]范心明,彭飞进,伍肇龙,等. 基于混合整数凸规划的主动配电网无功电压优化运行方法[J]. 电力电容器与无功补偿,2018,39(4):99-105.
[9]赖旬阳,吕旭军,郑彧,等. 基于PI调节器的电力系统二级电压控制动态仿真[J]. 浙江电力,2018,37(4):50-56.
[10]张勇军,张锡填,苏杰和. 基于AVC系统的省地电网关口无功功率协调控制方法[J]. 电网技术,2013,37(10):2771-2777.
[11]温柏坚,袁康龙,林舜江,等. 变电站电压无功控制对静态电压稳定的影响分析[J]. 电力系统保护与控制,2013(7):103-108.
[12]丁晓群,周玲,陈光宇. 电网自动电压控制(AVC)技术及案例分析[M]. 北京:机械工业出版社,2010.
[13]唐永红,张蓓路,轶兰强. 基于双闭环控制策略的AVC控制效果互动评估开发与应用[J]. 电力电容器与无功补偿,2017,38(4):152-157.
[14]毛建忠,刘勇,陈海滨. 基于AVC的电网变电自动控制系统设计[J]. 自动化与仪器仪表,2018(12):126-128.
[15]杨晓雷,金山红,唐昕,等. 省地县三级AVC系统协调控制及实现[J]. 电网与清洁能源,2015(2):39-42.
[16]彭飞进,李绥荣,李响,等. 考虑SVG的地区AVC系统协调控制方法的分析[J]. 自动化与仪器仪表,2017(4):20-24.
[17]戴志辉,张程,刘宁宁,等. 基于反行波差值的特高压直流线路纵联保护方案[J]. 电力系统保护与控制,2019,47(21):1-10.
[18]于洋,孙学锋,高鹏,等. 高压直流输电线路暂态保护分析与展望[J]. 电力系统保护与控制,2015,43(2):148-154.
[19]魏德华,苗世洪,刘子文,等. 基于边界特征的高压直流输电长线路故障判别方法[J]. 电力系统保护与控制,2018,46(17):75-82.
[20]许小雪,刘建锋,江玉蓉. 基于多频带能量的高压直流输电线路单端暂态电流保护[J]. 电力系统保护与控制,2016,44(22):32-39.
[21]董润楠,刘石,梁庚,等. 基于模型预测控制的微电网逆变器控制方法研究[J]. 电力系统保护与控制,2019,47(21):11-20.
[22]陆玉玉,王波,王晓飞,等. 考虑公平性的智能电网实时电价收益均衡模型[J]. 电力系统保护与控制,2019,47(21):41-46.
[23]王树东,杜巍,林莉,等. 基于合作博弈的需求侧响应下光储微电网优化配置[J]. 电力系统保护与控制,2018,46(1):129-137.
[24]李姚旺,苗世洪,刘君瑶,等. 考虑需求响应不确定性的光伏微电网储能系统优化配置[J]. 电力系统保护与控制,2018,46(20):69-77.
[25]王闪闪,赵晋斌,毛玲,等. 基于电动汽车移动储能特性的直流微网控制策略[J]. 电力系统保护与控制,2018,46(20):31-38.

Memo

Memo:
-
Last Update: 2020-11-15