|Table of Contents|

Improved ViBe Algorithm and Its Application in Moving Objects Detection(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2020年04期
Page:
104-112
Research Field:
·智慧应急信息技术·
Publishing date:

Info

Title:
Improved ViBe Algorithm and Its Application in Moving Objects Detection
Author(s):
Zhang QinliQiu JieYang Xiulan
College of Computer Science & Engineering,Yulin Normal University,Yulin 537000,China
Keywords:
ViBe algorithmmediandispersion coefficientspatial consistency coefficient
PACS:
TN911.73
DOI:
10.3969/j.issn.1001-4616.2020.04.015
Abstract:
When ViBe algorithm is used to detect moving objects,the results of foreground extraction are prone to ghost,noise and incomplete detection results. To solve these problems,this paper proposes an improved ViBe algorithm. Firstly,the background model is initialized by using the median of multiframe images instead of single frame image; secondly,the dispersion coefficient is introduced to replace the original fixed distance determination threshold with the adaptive radius threshold; thirdly,the spatial consistency coefficient is introduced to construct the dynamic adaptive updating factor instead of the original fixed updating factor. The experimental results show that compared with the traditional ViBe algorithm and some improved ViBe algorithms,our improved ViBe algorithm can adapt to the dynamic background and illumination change,effectively suppress ghost,reduce the false detection rate and make the detection target more complete.

References:

[1] 邱联奎,刘启亮,雷文龙. 基于背景减除与三帧差分相融合的运动检测[J]. 合肥工业大学学报(自然科学版),2014,37(5):572-577.
[2]BARRON J L,FLEET D J,BEAUCHEMIN S. Performance of optical flow techniques[J]. International journal of computer vision,1994,12(1):43-77.
[3]刘仲民,何胜皎,胡文瑾,等. 基于背景减除法的视频序列运动目标检测[J]. 计算机应用,2017,37(6):1777-1781.
[4]李清瑶,邹皓,赵群,等. 基于帧间差分自适应法的车辆抛洒物检测[J]. 长春理工大学学报(自然科学版),2018,41(4):108-113.
[5]李秋宇,张玉明,杨福猛,等. 一种视频微表情检测的改进光流算法[J]. 图学学报,2018,39(3):448-452.
[6]BHARTI,THIND T. Background subtraction techniques-review[J]. International journal of innovative technology & exploring engineering,2013,2(3):3099-3104.
[7]EVANGELIO R H,PATZOLD M,KELLER I,et al. Adaptively splitted gmm with feedback improvement for the task of background subtraction[J]. IEEE transactions on information forensics & security,2014,9(5):863-874.
[8]BARNICH O,VAN DROOGENBROECK M. ViBe:a universal background subtraction algorithm for video sequences[J]. IEEE transactions on image processing,2011,20(6):1709-1724.
[9]瞿中,刘帅,刘妍. 融合时域信息的自适应ViBe算法[J]. 计算机工程与设计,2019,40(3):189-194.
[10]杨丹,戴芳. 运动目标检测的ViBe算法改进[J]. 中国图象图形学报,2018,23(12):41-56.
[11]张磊,孟亮. 基于最小误差阈值自适应的ViBe改进算法[J]. 现代电子技术,2019,42(4):169-173.
[12]ZHAO W,WANG L,ZHANG Z. A novel atom search optimization for dispersion coefficient estimation in groundwater[J]. Future generation computer systems,2019,91(2):601-610.

Memo

Memo:
-
Last Update: 2020-11-15