|Table of Contents|

An Adaptively Reversed Diffuse Evolutionary Algorithmin Dynamic Environments(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2020年04期
Page:
119-128
Research Field:
·智慧应急信息技术·
Publishing date:

Info

Title:
An Adaptively Reversed Diffuse Evolutionary Algorithmin Dynamic Environments
Author(s):
Cao Wenliang1Kang Lanlan2Wang Shi1
(1.Department of Computer Engineering,Dongguan Polytechnic,Dongguan 523808,China)(2.College of Applied Science,Jiangxi University of Science and Technology,Ganzhou 341000,China)
Keywords:
dynamic optimizationparticle swarm optimizationreversed diffusebetween-swarms average Mahalanobis distance
PACS:
TP181
DOI:
10.3969/j.issn.1001-4616.2020.04.017
Abstract:
To solve the problem that traditional evolutionary optimization algorithm is difficult to effectively keep track of the optimal solution in dynamic environment,this paper proposes an adaptively reversed diffuse evolutionary algorithm(ARDEA). The new algorithm adopts the multi-population strategy to track the optimal solution and monitors the environmental changes by setting the global dynamic sentryin each subgroup. A differential particle swarm velocity update formula is introduced to guide individuals to search for the optimal points in the search space. Meanwhile,in order to ensure the diversity of the population and the search efficiency of the sub-population,a new exclusion strategy is proposed in this paper. This strategy includes two method. Firstly,it uses between-swarms average Mahalanobis distance to judge the inter-population distance. If the distance is too small between two sub-populations,hill-valley function is used to further determine whether they tracked the same peak or not. Secondly,the subpopulations with poor performance in the search overlap will be reinitialized by reverse diffusion operation(RD). The new algorithm is compared with several state-of-artdynamic optimization algorithms on moving peak problem. The results show that the ARDEA algorithm can track the optimal solution more effectively in the dynamic environment. Compared with other algorithms,the ARDEA algorithm shows strong robustness and adaptability.

References:

[1] LI Q Y,ZOU J,YANG S X,et al.. A predictive strategy based on special points for evolutionary dynamic multi-objective optimization[J]. Soft computing,2019,23(11):3723-3739.
[2]MAURIZIO F,LIBERATI D E,GUALANDI S,et al. Quantum-inspired evolutionary multiobjective optimization for a dynamic production scheduling approach[J]. Multidisciplinary approaches to neural computing,2018,69:191-201.
[3]简琤峰,陈家炜,张美玉. 面向边缘计算的改进混沌蝙蝠群协同调度算法[J]. 小型微型计算机系统,2019,40(11):2424-2430.
[4]YANG C,DING J. Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process[J]. Journal of intelligent manufacturing,2019,30:2701-2713.
[5]YANG S X,YAO X. Evolutionary computation for dynamic optimization problem[M]. Boston:Spring-Verlag Berlin Heidelberg,2013.
[6]CRUZ C,GONZáLEZ J R,PELTA D A. Optimization in dynamic environments:a survey on problems,methods and measures[J]. Soft computing,2011,15(7):1427-1488.
[7]YAZDANI D,NGUYEN T T,BRANKE J,et al. A multi-objective time-linkage approach for dynamic optimization problems with previous-solution displacement restriction[J]. Lecture notes in computer science,2018,10784:864-878.
[8]申鼎才,胡声洲. 基于领域搜索的粒子群动态优化算法[J]. 合肥工业大学学报,2017,40(5):628-632.
[9]LI C H,YANG S X. A clustering particle swarm optimizer for dynamic optimization[C]//Proceedings of the IEEE Comgress on Evolutionary Computation,Trondheim,Norway,2009,May:18-21.
[10]BRANKE J. Memory enhanced evolutionary algorithms for changing optimisation problems[C]//IEEE congress on evolutionary computation,Washington,DC,USA,1999:1875-1882.
[11]CAO L,XU L,GOODMAN E D. A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems[J]. Information sciences,2018,453:463-485.
[12]LI C,YANG S. A clustering particle swarm optimizer for dynamic optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation,2009:439-446.
[13]YANG S,LI C. A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments[J]. IEEE Transations on Evolutionary Computation,Proceedings of the IEEE Congress on Evolutionary Computation,2010,6(10):959-974.
[14]卜晨阳. 演化约束优化及演化动态优化求解算法研究[D]. 合肥:中国科学技术大学,2017.
[15]李志坚. 改进的差分演化算法及其在动态优化问题中的应用[D]. 武汉:华中师范大学,2016.
[16]HUI S,SUGANTHAN P N. Ensemble differential evolution with dynamic subpopulations and adaptive clearing for solving dynamic optimization problems[C]//IEEE congress on evolutionary computation. Brisbane,Australia,2012:1-8.
[17]MENDES R,MOHAIS A S. DynDE:a differential evolution for dynamic optimization problems[C]//IEEE Congress on Evolutionary Computation,Edinburgh,UK,2005:2808-2815.
[18]BREST J,ZAMUDA A,BOSKOVIC B,et al. Dynamic optimization using self-adaptive differential evolution[C]//IEEE Congress on Evolutionary Computation,Trondheim,Norway,2009:415-422.
[19]KENNEDY J,EBERHART R C. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth,Australia,1995:1942-1948.
[20]康岚兰,董文永,宋婉娟,等. 无惯性自适应精英变异反向粒子群优化算法[J]. 通信学报,2017,38(8):66-78.
[21]STORN R,PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization,1997,11:341-359.
[22]周新宇,吴志健,王晖,等. 一种精英反向学习的粒子群优化算法. 电子学报,2013,41(8):1647-1652.
[23]BLACKWELL T,BRANKE J. Multi-swarm optimization in dynamic environments[C]//Applications of Evolutionary Computing. Coimbra,Porugal,2004:489-500.
[24]谢修娟,李香菊,莫凌飞. 基于改进K-means算法的微博舆情分析研究[J]. 计算机工程与科学,2018,40(1):155-158.
[25]ZU Z W,LI Q. Mahalanobis distance fuzzy clustering algorithm based on particle swarm optimization[J]. Journal of Chongqing University of posts and telecommunications(natural science edition),2019,31(2):275-284.
[26]ZUO X,XIAO L. A DE and PSO based hybrid algorithm for dynamic optimization problems[J]. Soft computing,2014,18:1405-1424.
[27]LI C,YANG S,NGUYEN T T,et al. Benchmark Generator for the CEC’2009 Competition on Dynamic Optimization[R]. University of Leicester,University of Birmingham,Honda Research Institute Europe,Vorarlberg University of Applied Sciences,Nanyang Technological University,Technical Report,October 26,2008:1-14.
[28]HAN D P,KIRSTEN E,JAN C B,et al. A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms[J]. Neural computing and applications. 2020,32:567-588.

Memo

Memo:
-
Last Update: 2020-11-15