[1] LI Q Y,ZOU J,YANG S X,et al.. A predictive strategy based on special points for evolutionary dynamic multi-objective optimization[J]. Soft computing,2019,23(11):3723-3739.
[2]MAURIZIO F,LIBERATI D E,GUALANDI S,et al. Quantum-inspired evolutionary multiobjective optimization for a dynamic production scheduling approach[J]. Multidisciplinary approaches to neural computing,2018,69:191-201.
[3]简琤峰,陈家炜,张美玉. 面向边缘计算的改进混沌蝙蝠群协同调度算法[J]. 小型微型计算机系统,2019,40(11):2424-2430.
[4]YANG C,DING J. Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process[J]. Journal of intelligent manufacturing,2019,30:2701-2713.
[5]YANG S X,YAO X. Evolutionary computation for dynamic optimization problem[M]. Boston:Spring-Verlag Berlin Heidelberg,2013.
[6]CRUZ C,GONZáLEZ J R,PELTA D A. Optimization in dynamic environments:a survey on problems,methods and measures[J]. Soft computing,2011,15(7):1427-1488.
[7]YAZDANI D,NGUYEN T T,BRANKE J,et al. A multi-objective time-linkage approach for dynamic optimization problems with previous-solution displacement restriction[J]. Lecture notes in computer science,2018,10784:864-878.
[8]申鼎才,胡声洲. 基于领域搜索的粒子群动态优化算法[J]. 合肥工业大学学报,2017,40(5):628-632.
[9]LI C H,YANG S X. A clustering particle swarm optimizer for dynamic optimization[C]//Proceedings of the IEEE Comgress on Evolutionary Computation,Trondheim,Norway,2009,May:18-21.
[10]BRANKE J. Memory enhanced evolutionary algorithms for changing optimisation problems[C]//IEEE congress on evolutionary computation,Washington,DC,USA,1999:1875-1882.
[11]CAO L,XU L,GOODMAN E D. A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems[J]. Information sciences,2018,453:463-485.
[12]LI C,YANG S. A clustering particle swarm optimizer for dynamic optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation,2009:439-446.
[13]YANG S,LI C. A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments[J]. IEEE Transations on Evolutionary Computation,Proceedings of the IEEE Congress on Evolutionary Computation,2010,6(10):959-974.
[14]卜晨阳. 演化约束优化及演化动态优化求解算法研究[D]. 合肥:中国科学技术大学,2017.
[15]李志坚. 改进的差分演化算法及其在动态优化问题中的应用[D]. 武汉:华中师范大学,2016.
[16]HUI S,SUGANTHAN P N. Ensemble differential evolution with dynamic subpopulations and adaptive clearing for solving dynamic optimization problems[C]//IEEE congress on evolutionary computation. Brisbane,Australia,2012:1-8.
[17]MENDES R,MOHAIS A S. DynDE:a differential evolution for dynamic optimization problems[C]//IEEE Congress on Evolutionary Computation,Edinburgh,UK,2005:2808-2815.
[18]BREST J,ZAMUDA A,BOSKOVIC B,et al. Dynamic optimization using self-adaptive differential evolution[C]//IEEE Congress on Evolutionary Computation,Trondheim,Norway,2009:415-422.
[19]KENNEDY J,EBERHART R C. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth,Australia,1995:1942-1948.
[20]康岚兰,董文永,宋婉娟,等. 无惯性自适应精英变异反向粒子群优化算法[J]. 通信学报,2017,38(8):66-78.
[21]STORN R,PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization,1997,11:341-359.
[22]周新宇,吴志健,王晖,等. 一种精英反向学习的粒子群优化算法. 电子学报,2013,41(8):1647-1652.
[23]BLACKWELL T,BRANKE J. Multi-swarm optimization in dynamic environments[C]//Applications of Evolutionary Computing. Coimbra,Porugal,2004:489-500.
[24]谢修娟,李香菊,莫凌飞. 基于改进K-means算法的微博舆情分析研究[J]. 计算机工程与科学,2018,40(1):155-158.
[25]ZU Z W,LI Q. Mahalanobis distance fuzzy clustering algorithm based on particle swarm optimization[J]. Journal of Chongqing University of posts and telecommunications(natural science edition),2019,31(2):275-284.
[26]ZUO X,XIAO L. A DE and PSO based hybrid algorithm for dynamic optimization problems[J]. Soft computing,2014,18:1405-1424.
[27]LI C,YANG S,NGUYEN T T,et al. Benchmark Generator for the CEC’2009 Competition on Dynamic Optimization[R]. University of Leicester,University of Birmingham,Honda Research Institute Europe,Vorarlberg University of Applied Sciences,Nanyang Technological University,Technical Report,October 26,2008:1-14.
[28]HAN D P,KIRSTEN E,JAN C B,et al. A survey of dynamic parameter setting methods for nature-inspired swarm intelligence algorithms[J]. Neural computing and applications. 2020,32:567-588.