|Table of Contents|

A Dynamic Environmental Adaptive Positioning Method Base on WSN(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2021年01期
Page:
35-42
Research Field:
·物理学·
Publishing date:

Info

Title:
A Dynamic Environmental Adaptive Positioning Method Base on WSN
Author(s):
Yang Wenbo1Liu Yanhua13Cui Mingyue2
(1.Department of Electronics Engineering,Henan Polytechnic Institute,Nanyang 473061,China)(2.College of Physics and Electronic Engineering,Nanyang Normal University,Nanyang 473000,China)(3.Industrial Embedded Network Control Engineering Technology Research Center of Henan Province,Nanyang 473000,China)
Keywords:
wireless positioningenvironment adaptiveEKFRSSI distance
PACS:
TN98
DOI:
10.3969/j.issn.1001-4616.2021.01.006
Abstract:
This paper studies deeply the existing positioning technology based on wireless sensor network(WSN). Aiming at the problem of positioning accuracy caused by ranging error that usually generated by environmental factors in the range related positioning algorithms based on radioactive signal strength indication(RSSI),a dynamic environment adaptive positioning algorithm(DEAP)based on environment adaptive ranging algorithm(EAR)and Current Statistics model and extended kalman filter algorithm(CS-EKF)is proposed. The positioning experiments and simulations show that compared with existing WSN positioning methods,DEAP has higher positioning accuracy and can adapt to complex positioning environment. The positioning accuracy is above 50% higher than weighted least square estimate(WLSE)and weighted centroid location algorithm(WCLA),so it has universal application significance.

References:

[1] 段林甫,秦爽,万群. 基于RSSI辅助的精确测距混合定位算法[J]. 电子科技大学学报,2019,48(3):331-335.
[2]詹国胜. 应急环境下无线传感器网络构建和节点定位研究[D]. 南京:南京理工大学,2013:26-31.
[3]张乙竹,周礼争,唐瑞,等. 基于K-means聚类点密度的WSNs加权质心定位算法[J]. 传感器与微系统,2015,34(7):125-131.
[4]梁鹏. 基于RSSI的隧道人员定位系统研究[D]. 西安:长安大学,2017:28-53.
[5]张丹. 无线传感器网络中定位算法及其性能优化问题研究[D]. 长春:吉林大学,2017:12-32.
[6]张毅,徐昌庆,万群. 移动网络定位研究进展[J]. 导航定位与授时,2019,6(2):1-11.
[7]王超.基于iBeacon位置指纹的室内定位技术研究与实现[D]. 成都:电子科技大学,2020:6-16.
[8]袁鑫,吴晓平,王国英. 线性最小二乘法的RSSI定位精确计算方法[J]. 传感技术学报,2014,27(10):1412-1417.
[9]黄海滨. 基于RFID的室内定位追踪技术及其在车间的应用研究[D]. 武汉:华中科技大学,2018:5-9.
[10]王超. 基于ZigBee无线传感网络的车辆定位算法研究[D]. 沈阳:沈阳理工大学,2017:12-15.
[11]刘冬. 基于ZigBee无线定位方法研究[D]. 哈尔滨:哈尔滨工程大学,2017:5-8.
[12]章坚武,张 璐,应瑛,等. 基于 ZigBee 的 RSSI 测距研究[J]. 传感技术学报,2009,22(2):285-288.
[13]陈良泽. 用矩阵运算实现曲线拟合中的最小二乘法[J]. 传感技术,2001,20(2):30-34.
[14]高国胜,陈俊杰,李刚. 基于RSSI测距的信标节点自校正定位算法[J]. 测控技术,2010,28(8):93-97.
[15]KAY S M. Fundamentals of statistical signal processing:practical algorithm development[M]. Upper Saddle River:Pearson Education,2013:53-57.



[16]RAPPAPORT T S. Wireless communication principles and practice. upper saddle river[M]. Upper Saddle River:Prentice Hall PTR,1996:70-74.

[17]来磊,曲仕茹. 交通无线传感网络运动车辆定位方法[J]. 交通运输工程学报,2013,13(1):114-120.
[18]杨维,周宇,王越等.基于交互式“当前”统计模型的机动目标跟踪算法[J]. 火炮发射与控制学报,2019,29(3):21-26.
[19]盘朝奉,丁亚强,江浩斌. 基于车辆前方目标运动模型的主动避撞系统的研究[J]. 重庆理工大学学报,2018,32(7):25-31.
[20]宋迎春. 动态定位中的卡尔曼滤波研究[D]. 长沙:中南大学,2006:19-26.
[21]徐壮,彭力. 带非线性约束的自适应高斯和卡尔曼滤波目标跟踪算法[J]. 计算机测量与控制,2019,46(6):241-246.
[22]蔡俊豪,曹广忠,彭亚萍,等. 基于CC2530与CC3200的室内环境检测系统设计[J]. 现代电子技术,2019,42(10):71-78.
[23]刘美,高欢萍,林伟鹏. 非参数信念传播的WSN目标跟踪方法[J]. 自动化仪表,2011,32(1):19-22.

Memo

Memo:
-
Last Update: 2021-03-15