|Table of Contents|

Research on the Degree of Customer Satisfaction and Hierarchy of Needs ofBeijing Shared Accommodation Based on Baidu AI Open Platform(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2021年01期
Page:
64-70
Research Field:
·地理学·
Publishing date:

Info

Title:
Research on the Degree of Customer Satisfaction and Hierarchy of Needs ofBeijing Shared Accommodation Based on Baidu AI Open Platform
Author(s):
Xie Qiuyi1Zhou Nianxing12Xuan Yuan13Ma Xiaobin1
(1.School of Geography,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)(3.Guangdong Urban and Rural Planning and Design Institute Co.,Ltd,Guangzhou 510290,China)
Keywords:
Baidu AI open platformcustomer satisfactionshared accommodationhierarchy of needs theorynetwork text analysis
PACS:
F590
DOI:
10.3969/j.issn.1001-4616.2021.01.010
Abstract:
Shared accommodation is a new type of non-standard accommodation product. To explore the customer satisfaction of shared accommodation and clarify the hierarchy of needs is conducive to promoting the high-quality development of shared accommodation. This paper obtains the text data of guest reviews of Beijing Airbnb website through crawler technology,and analyzes the degree of customer satisfaction and hierarchy of needs of Beijing shared accommodation by using Baidu AI open platform. The conclusions are as follows:Firstly,customer satisfaction with Beijing shared accommodation products is generally high. Customers pay more attention to the surrounding transportation,infrastructure and homeowner services in shared accommodation,while pay less attention to the decoration environment,subjective feeling and housing price; Secondly,the degree of customer satisfaction is moderate,and the extreme rating is less. And generally speaking,the more satisfied the customers are the more detailed the network text uation content will be. Thirdly,the hierarchy of needs is in the order of house price,infrastructure,surrounding traffic/decoration environment,houseowner service and subjective feeling. At present,the market positioning of shared accommodation is closer to budget hotels,while its“sharing”feature is not obvious.Shared accommodation should have a broader development space. This paper introduces a mature artificial intelligence product Baidu AI open platform as the technical means to uate the degree of customer satisfaction of shared accommodation more accurately,improves the accuracy of network text processing and practical application value,and provides a paradigm for the research on the degree of satisfaction of emerging industries.

References:

[1] 裴飞,汤万金,咸奎桐. 顾客满意度研究与应用综述[J]. 世界标准化与质量管理,2006(10):4-7.
[2]FORNELL C. A national customer satisfaction barometer:the Swedish experience[J]. Journal of marketing,1992,56(1):6-21.
[3]沈涵. 基于ACSI的经济型酒店顾客满意度测评模型[J]. 旅游学刊,2011,26(1):58-62.
[4]焦明宇. 基于顾客价值的经济型酒店顾客满意度测评研究[J]. 旅游学刊,2014,29(11):80-86.
[5]丁于思,肖轶楠. 基于网络点评的五星级酒店顾客满意度测评研究[J]. 经济地理,2014,34(5):182-186.
[6]俞越. 上海不同档次酒店顾客满意度影响因素差异研究[D]. 上海:华东师范大学,2017.
[7]由丽萍,白旭云. 基于在线评论情感语义分析和TOPSIS法的酒店服务质量测量[J]. 情报科学,2017,35(10):13-17.
[8]吴维芳,高宝俊,杨海霞,等. 评论文本对酒店满意度的影响:基于情感分析的方法[J]. 数据分析与知识发现,2017,1(3):62-71.
[9]刘岩,张艳荣,赵志杰,等. 基于情感分析的酒店顾客满意度评估[J]. 计算机应用与软件,2020,37(2):54-60.
[10]孟小峰,慈祥. 大数据管理:概念、技术与挑战[J]. 计算机研究与发展,2013,50(1):146-169.
[11]刘寅斌,胡亚萍. 从谷歌大脑看人工智能在知识服务上的应用[J]. 图书与情报,2017(6):112-116.
[12]晋铭铭,罗迅. 马斯洛需求层次理论浅析[J]. 管理观察,2019(16):77-79.
[13]朱志强. 马斯洛的需要层次理论述评[J]. 武汉大学学报(社会科学版),1989(2):124-126.
[14]JIAFU T,RICHARD Y K F,BAODONG X,et al. A new approach to quality function deployment planning with financial consideration[J]. Computers & operations research,2002,29(11):1447-1463.
[15]苏俊仪. 共享住宿服务的顾客感知价值研究[D]. 广州:华南理工大学,2019.



[16]王晓暾,熊伟. 质量功能展开中顾客需求重要度确定的粗糙层次分析法[J]. 计算机集成制造系统,2010,16(4):763-771.

[17]严桢利. 杭州经济型酒店的顾客满意度研究[D]. 杭州:浙江财经学院,2012.
[18]廖光继. 在线环境下的从众效应及影响因素研究[D]. 重庆:重庆大学,2017.
[19]江敏,肖诗斌,王弘蔚,等. 一种改进的基于《知网》的词语语义相似度计算[J]. 中文信息学报,2008,22(5):84-89.
[20]汤天波,吴晓隽. 共享经济:“互联网+”下的颠覆性经济模式[J]. 科学发展,2015(12):78-84.

Memo

Memo:
-
Last Update: 2021-03-15