|Table of Contents|

Some Estimates for H1 Nonconforming Virtual Element Methods(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2021年02期
Page:
1-5
Research Field:
·数学·
Publishing date:

Info

Title:
Some Estimates for H1 Nonconforming Virtual Element Methods
Author(s):
Huang JianguoYu Yue
School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China
Keywords:
nonconforming virtual element methodinverse inequalitynorm equivalenceinterpolation error estimate
PACS:
O24
DOI:
10.3969/j.issn.1001-4616.2021.02.001
Abstract:
This paper develops some estimates for the H1 nonconforming virtual element methods(VEMs)including inverse inequality,norm equivalence,and interpolation error estimate related to polygonal meshes,each of which admits a virtual quasi-uniform and regular triangulation. We first derive the inverse inequality by using the arguments for proving the inverse inequality of conforming VEMs and the bubble function technique. Next,we obtain the inverse inequality and the Poincare-Friedrichs inequality involving the degrees of freedom of a VEM function,which lead to the critical estimate of the upper bound of the L2 case in the norm equivalence. In view of the stability result of the interpolation operator established in advance,we finally obtain a unified error analysis of interpolation operators using the Bramble-Hilbert argument.

References:

[1] BEIRAO D V L,BREZZI F,CANGIANI A,et al. Basic principles of virtual element methods[J]. Mathematical models and methods in applied sciences,2013,23(1):199-214.
[2]AHMAD B,ALSAEDI A,BREZZI F,et al. Equivalent projectors for virtual element methods[J]. Computational and applied mathematics,2013,66(3),376-391.
[3]BEIRAO D V L,BREZZI F,MARINI L D,et al. The Hitchhiker’s guide to the virtual element method[J]. Mathematical models and methods in applied sciences,2014,24(8):1541-1573.
[4]DE DIOS B A,LIPNIKOV K,MANZINI G. The nonconforming virtual element method[J]. Mathematical modelling and numerical analysis,2016,50(3):879-904.
[5]CANGIANI A,MANZINI G,SUTTON O J. Conforming and nonconforming virtual element methods for elliptic problems[J]. IMA journal of numerical analysis,2017,37(3):1317-1354.
[6]BREZZI F,MARINI L D. Virtual element methods for plate bending problems[J]. Computer methods in applied mechanics and engineering,2013,253:455-462.
[7]CHEN L,HUANG X. Nonconforming virtual element method for 2m-th order partial differential equations in Rn[J]. Mathematics of computation,2020,89(324):1711-1744.
[8]CHEN L,HUANG J. Some error analysis on virtual element methods[J]. A quarterly on numerical analysis and theory of computation,2018,55(1):5,23.
[9]HUANG J,YU Y. A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations[J]. Journal of computational and applied mathematics,2021,386:113229,20.
[10]BRENNER S C,SCOTT L R. The mathematical theory of finite element methods[M]. New York:Springer-Verlag,2008.
[11]BEIRAO D V L,LOVADINA C,RUSSO A. Stability analysis for the virtual element method[J]. Mathematical models and methods in applied sciences,2017,27(13):2557-2594.

Memo

Memo:
-
Last Update: 2021-06-30