|Table of Contents|

Application of K-Means Theory Based on Data(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2021年02期
Page:
10-17
Research Field:
·数学·
Publishing date:

Info

Title:
Application of K-Means Theory Based on Data
Author(s):
Yang Jin1Chen Lin1Zhou Qiang2Chen Jianxun1
(1.Chongqing Jiaotong University,Chongqing 400074,China)(2.Chongqing Nankai Middle School,Chongqing 400074,China)
Keywords:
K-means clusterprincipal component analysisdata processingcharacteristic parameter
PACS:
O175.13
DOI:
10.3969/j.issn.1001-4616.2021.02.003
Abstract:
In this paper,the principal component analysis method is used to process the characteristic parameters of vehicle driving conditions,and the K-means clustering principle is used to cluster all the representative kinematics fragments,and then the mathematical principle of vehicle driving conditions is obtained. It provides a theoretical basis for the development of automobile energy saving and emission reduction and the establishment of driving conditions that can accurately reflect the characteristics of road conditions in China.

References:

[1] HO S H,WONG Y D,CHANG W C. Developing singapore driving cycle for passenger cars to estimate fuel consumption and vehicular emissions[J]. Atmospheric environment,2014,97:353-362.
[2]LIN J,NIEMEIER D A. An exploratory analysis comparing a stochastic driving cycle to California’s regulatory cycle[J]. Atmospheric environment,2002,36(38):5759-5770.
[3]姜平,石琴,陈无畏. 基于小波分析的城市道路行驶工况构建的研究[J]. 汽车工程,2011,33(1):70-73.
[4]石琴,郑与波,姜平. 基于运动学片段的城市道路行驶工况的研究[J]. 汽车工程,2011,33(3):256-261.
[5]ANDERSON T W. Asymptotic theory for principal component analysis[J]. Annals of mathematical statistics,1963,34(1):122-148.
[6]余平. 基于FPCA的部分函数型线性模型的复合分位数回归估计[J]. 山西师范大学学报(自然科学版),2019,33(3):5-12.
[7]YEUNG K Y,RUZZO W L. Principal component analysis for clustering gene expression data[J]. Bioinformatics,2019,17(9):763-74.
[8]KORHONEN P,SILJAMKI A. Ordinal principal component analysis theory and an application[J]. Computational statistics & data analysis,1998,26(4):411-424.
[9]白奕. 多指标综合评价的主成分分析模型及原理[J]. 陕西师范大学学报(自然科学版),1998,26(2):105-106.
[10]刘靖明,韩丽川,侯立文. 基于粒子群的K均值聚类算法[J]. 系统工程理论与实践,2005,25(6):54-58.
[11]温瑞英,王红勇. 基于因子分析和K-means聚类的空中交通复杂性评价[J]. 太原理工大学学报,2016,47(3):384-388,404.
[12]DING C,HE X. K-means clustering via principal component analysis[J]. Applied and computational mathematics,2004,1:1-8.

Memo

Memo:
-
Last Update: 2021-06-30