|Table of Contents|

Two-Dimensional Jet Flow with Gravity ina Semi-Infinitely Long Symmetric Nozzle(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2021年03期
Page:
1-8
Research Field:
·数学·
Publishing date:

Info

Title:
Two-Dimensional Jet Flow with Gravity ina Semi-Infinitely Long Symmetric Nozzle
Author(s):
Zhang Qin
Department of Mathematics and Statistic,Chongqing Jiaotong University,Chongqing 400074,China
Keywords:
existence and uniquenessfree streamlineinviscidincompressible
PACS:
76B03,76B10,35J25,35R35
DOI:
10.3969/j.issn.1001-4616.2021.03.001
Abstract:
The main object of this paper is to investigate the well-posedness theory of the incompressible inviscid jet flow with gravity in an semi-infinitely long symmetric nozzle. The main results read that given a mass flux in the inlet of the nozzle,we established the existence and the uniqueness of the incompressible jet flow problem with gravity in an semi-infinitely long symmetric nozzle,which contain a smooth free surface detaching at the boundary point of the lower nozzle wall.

References:

[1] GARABEDIAN P R,LEWY H,SCHIFFER M. Axially symmetric cavitational flow[J]. Annals of mathematics,1952,56:560-602.
[2]BIRKHOFF G,ZARANTONELLO E H. Jets,wakes,and cavities[M]. New York:Academic Press,1957.
[3]FRIEDMAN A. Variational principles and free-boundary problems[C]//Pure and Applied Mathematics. New York:Wiley,1982.
[4]GILBARG D,TRUDINGER N S. Elliptic partial differential equations of second order[C]//Classic in Mathematics. Berlin:Springer-Verlag,2001.
[5]ALT H W,CAFFARELLI L A. Existence and regularity for a minimum problem with free boundary[J]. Journal fur die reine und angewandte mathematik,1981,325:105-144.
[6]ALT H W,CAFFARELLI L A,FRIEDMAN A. Axially symmetric jet flows[J]. Archive for rational mechanics and analysis,1983,81:97-150.
[7]ALT H W,CAFFARELLI L A,FRIEDMAN A. Asymmetric jet flows[J]. Communication on pure and applied mathematics,1982,35:29-68.
[8]ALT H W,CAFFARELLI L A,FRIEDMAN A. Jet flow with gravity[J]. Journal fur die reine und angewandte mathematik,1982,331:58-103.
[9]CAFFARELLI L A,FRIEDMAN A. Axially symmetric infinite cavities[J]. Indiana university mathematics journal,1982,30:135-160.

Memo

Memo:
-
Last Update: 2021-09-15