|Table of Contents|

Research on Urban Street Vitality and Beauty Degree in City CenterBased on Multi-source Data:a Case Study ofGulou District,Fuzhou City(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2021年03期
Page:
63-69
Research Field:
·地理学·
Publishing date:

Info

Title:
Research on Urban Street Vitality and Beauty Degree in City CenterBased on Multi-source Data:a Case Study ofGulou District,Fuzhou City
Author(s):
Lin Runze12Zou Cheng12Wang Ziling12Yang Junning12Zeng Zhen12Li Xiaohe12
(1.College of Landscape Architecture,Fujian Agriculture and Forestry University,Fuzhou 350002,China)(2.Research Center for Human Settlements of Strait Beautiful Countryside,Fuzhou 350000,China)
Keywords:
street vitalitybeauty degreemulti-source dataGulou DistrictFuzhou City
PACS:
TU984.2
DOI:
10.3969/j.issn.1001-4616.2021.03.010
Abstract:
As the skeleton of the city,the street is an important carrier for the vitality of the city. Improving street vitality is one of the important measures to improve the happiness index of residents in the city. Using population thermal data,Google street view images,and points of interest(POI),an uation system was constructed from the three levels of street space vitality intensity,street beauty degree and infrastructure perfection to qualitatively and quantitatively determine the street space vitality in Gulou District,Fuzhou City. The study found that:firstly,the overall vitality of Gulou District is characterized by the spatial distribution of “multi-centered and two-zones”. The population thermal of streets outside the second ring road is relatively hot,and the inner side of the second ring road has significantly weakened due to the hollowing out of the city. Secondly,POI is spatially condensed with Three Lanes and Seven Alleys as the core,and the high-density core area outside the second ring sharply decreases. Thirdly,the overall beauty degree and satisfaction degree of the streets in Gulou District are low,and the green viewing rate is an important factor affecting the beauty of the streets. Finally,among the three uation indicators,street beauty degree and population thermal have a significant positive correlation. Compared with infrastructure perfection,creating a beautiful street space can improve the overall vitality of the street in an all-round way.

References:

[1] 叶宇,庄宇,张灵珠,等. 城市设计中活力营造的形态学探究——基于城市空间形态特征量化分析与居民活动检验[J]. 国际城市规划,2016,31(1):26-33.
[2]扬·盖尔. 交往与空间[M]. 何人可,译. 北京:中国建筑工业出版社,2003.
[3]方可. 简·雅各布斯关于城市多样性的思想及其对旧城改造的启示——简·雅各布斯《美国大城市的生与死》读后[J]. 国际城市规划,2009,24(S1):177-179.
[4]王婧,吴巧红. 绿道推动城市空间健康发展[J]. 旅游学刊,2021,36(3):11-13.
[5]鲍方,邱建. 通过轻轨建设促进城市活力提升——以美国俄勒冈州波特兰市为例[J]. 城市轨道交通研究,2020,23(7):12-17.
[6]LOPES M N,CAMANHO A S. Public green space use and consequences on urban vitality:an assessment of European cities[J]. Social indicators research:an international & interdisciplinary journal for quality of life measurement,2013,113(3):751-767.
[7]周雨霏,杨家文,周江评,等. 基于热力图数据的轨道交通站点服务区活力测度研究——以深圳市地铁为例[J]. 北京大学学报(自然科学版),2020,56(5):875-883.
[8]钮心毅,吴莞姝,李萌. 基于LBS定位数据的建成环境对街道活力的影响及其时空特征研究[J]. 国际城市规划,2019,34(1):28-37.
[9]聂晓嘉,张轶超,周卫,等. 城市空间活力研究现状与趋势——基于中英文文献的比较分析[J]. 西南大学学报(自然科学版),2021,43(3):147-155.
[10]杨朗,张晓明,周丽娜. 大数据视角下广州老城活力时空特征及影响机制[J]. 城市学刊,2020,41(4):40-46.
[11]朱婷婷,涂伟,乐阳,等. 利用地理标签数据感知城市活力[J]. 测绘学报,2020,49(3):365-374.
[12]胡勇,赵媛,曹芳东. 基于点数据的大城市郊区游憩空间演化研究——以南京郊区为例[J]. 南京师大学报(自然科学版),2018,41(2):107-114.
[13]童陆亿,胡守庚. 中国主要城市建设用地扩张特征[J]. 资源科学,2016,38(1):50-61.
[14]董祚继. 新时代国土空间规划的十大关系[J]. 资源科学,2019,41(9):1589-1599.
[15]程朋根,岳琛,朱欣焰. 多源数据支持下的城市生态环境评价及其与人类活动关系的研究[J/OL]. 武汉大学学报(信息科学版):1-14[2021-04-26]. https://doi.org/10.13203/j.whugis20200382.
[16]谭佩珊,麦可,张亚涛,等. 利用多源城市数据划定地铁站点吸引范围[J]. 地球信息科学学报,2021,23(4):593-603.
[17]刘颂,赖思琪. 基于多源数据的城市公共空间活力影响因素研究——以上海市黄浦江滨水区为例[J]. 风景园林,2021,28(3):75-81.
[18]李苗裔,杨忠豪,薛峰. 基于多源数据的城市街道绿化品质测度与规划设计提升策略——以福州主城区为例[J]. 风景园林,2021,28(2):62-68.
[19]康翔,潘剑君,朱燕香,等. 一种基于POI大数据的城市核心区识别方法[J]. 遥感技术与应用,2021,36(1):237-246.
[20]戢晓峰,李晓娟,杨晓泉,等. 基于POI数据的城市交通设施空间分布特征提取——以昆明市主城区为例[J]. 地域研究与开发,2020,39(3):76-82.
[21]任彦霓,周廷刚,李洪忠,等. 基于遥感和POI数据的重庆市主城区城市生态环境格局研究[J/OL]. 地球物理学进展:1-15[2021-04-26]. http://kns.cnki.net/kcms/detail/11.2982.P.20210209.1729.032.html.
[22]唐婧娴,龙瀛. 特大城市中心区街道空间品质的测度——以北京二三环和上海内环为例[J]. 规划师,2017,33(2):68-73.
[23]福建省统计局. 福建统计年鉴[M]. 北京:中国统计出版社,2020.
[24]明雨佳,刘勇,周佳松. 基于大数据的山地城市活力评价——以重庆主城区为例[J]. 资源科学,2020,42(4):710-722.
[25]徐博伦,杨芳绒,李利. 基于图像识别的郑州市老城区道路绿视率研究[J]. 西南师范大学学报(自然科学版),2020,45(11):113-119.
[26]段亚明,刘勇,刘秀华,等. 基于POI大数据的重庆主城区多中心识别[J]. 自然资源学报,2018,33(5):788-800.
[27]唐任伍,肖彦博,张亮. 以合作治理医治“逆城市化”之殇[J]. 经济学动态,2016(11):90-98.

Memo

Memo:
-
Last Update: 2021-09-15