[1] DOMINKOVIC D F,BACEKOVIC I,PEDERSEN A S,et al. The future of transportation in sustainable energy systems:opportunities and barriers in a clean energy transition[J]. Renewable & sustainable energy reviews,2018,82(2):1823-1838.
[2]WALTER M G,WARREN E L,MCKONE J R,et al. Solar water splitting cells[J]. Chemical reviews,2010,110(11):6446-6473.
[3]MORALES-GUIO C G,STERN L A,HU X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical society reviews,2014,43(18):6555-6569.
[4]KUNHIRAMAN A K. Hydrogen evolution reaction catalyzed by platinum nanoislands decorated on three-dimensional nanocarbon hybrid[J]. Ionics,2019,25(8):3787-3797.
[5]ESPOSITO D V,HUNT S T,STOTTLEMYER A L,et al. Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates[J]. Angewandte chemie international edition,2010,49(51):9859-9862.
[6]TANG F M,SU H,ZHAO X,et al. Potential-driven surface active structure rearrangement over FeP@NC towards efficient electrocatalytic hydrogen evolution[J]. Physical chemistry chemical physics,2019,21(15):7918-7923.
[7]LIU M J,YANG L M,LIU T,et al. Fe2P/reduced grapheneoxide/Fe2P sandwich-structured nanowall arrays:a high-performance non-noble-metal electrocatalyst for hydrogen evolution[J]. Journal of materials chemistry,2017,5(18):8608-8615.
[8]LIN C,GAO Z F,YANG J H,et al. Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction[J]. Journal of materials chemistry,2018,6(15):6387-6392.
[9]YAN Y,ZHAO B,YI S H,et al. Assembling pore-rich FeP nanorods on the CNT backbone as an advanced electrocatalyst for oxygen evolution[J]. Journal of materials chemistry,2016,4(33):13005-13010.
[10]HE F,LI K,XIE G Y,et al. Theoretical insights on the catalytic activity and mechanism for oxygen reduction reaction at Fe and P codoped graphene[J]. Physical chemistry chemical physics,2016,18(18):12675-12681.
[11]LI G L,YUAN L F,CHEN W W,et al. Efficient hierarchically synthesized Fe2P nanoparticles embedded in an N,P-doped mesoporous carbon catalyst for the oxygen reduction reaction[J]. New journal of chemistry,2018,42(12):9488-9495.
[12]SINGH K P,BAE E J,YU J S. Fe-P:A new class of electroactive catalyst for oxygen reduction reaction[J]. Journal of the American chemical society,2015,137(9):3165-3168.
[13]ZHAO Z Y,LIU L L,ZHANG S T,et al. Phase diagram,stability and electronic properties of an Fe-P system under high pressure:a first principles study[J]. RSC advances,2017,7(26):15986-15991.
[14]BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of chemical physics,1993,98(7):5648-5652.
[15]秦渝,方志刚,张伟,等. 团簇Co3NiB催化析氢活性研究[J]. 江西师范大学学报(自然科学版),2020,44(1):56-62.
[16]李历红,方志刚,赵振宁,等. 团簇Ni3CoP电子性质与磁性研究[J]. 江西师范大学学报(自然科学版),2019,43(2):54-60.
[17]杨广丽,岳瑞英,赵健,等. 吸附在TiO2(110)表面的Au(n-1)Ag(n=1-5)团簇的第一性原理研究[J]. 南京师大学报(自然科学版),2016,39(2):38-43.
[18]YU X G. Hyperbolic multi-topology and the basic principle in quantum mechanics[J]. Advances in applied clifford algebras,1999,9(1):109-118.
[19]秦渝,方志刚,张伟,等. 团簇Co3NiB2催化性质研究[J]. 辽宁科技大学学报,2019,42(5):365-370.
[20]李雯博,方志刚,刘大永,等. 非晶态合金Co3B2稳定结构、组成和电子性质[J]. 辽宁科技大学学报,2016,39(2):113-118.
[21]廖薇,方志刚,赵振宁,等. 团簇Fe3Cr3的电子性质与成键[J]. 辽宁科技大学学报,2019,42(2):101-106.
[22]HAY P J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms[J]. Journal of chemical physics,1977,66(10):4377-4384.
[23]HAY P J,WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. Journal of chemical physics,1985,82(1):270-283.
[24]WATANABE K,NAKAYAMA T,MOTTL J. Ionization potentials of some molecules[J]. Journal of quantitative spectroscopy & radiative transfer,1962,2(4):369-382.
[25]KENDALL R A,DUNNING T H,HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. Journal of chemical physics,1992,96(9):6796-6806.
[26]PARR R G,DONNELLY R A,LEVY M,et al. Electronegativity:the density functional viewpoint[J]. Journal of chemical physics,1978,68(8):3801-3807.
[27]LORQUET J C. Ionization potential of ammonia—some implications concerning Koopman’s theorem[J]. Reviews of modern physics,1960,32(2):312-312.