|Table of Contents|

Electronic Properties and Magnetic Properties of Cluster Fe4P(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2021年04期
Page:
17-24
Research Field:
·化学·
Publishing date:

Info

Title:
Electronic Properties and Magnetic Properties of Cluster Fe4P
Author(s):
Hou QianqianFang ZhigangQin YuXu YouLü MengnaJing Runtian
School of Chemical Engineering,University of Science and Technology,Anshan 114501,China
Keywords:
cluster Fe4Pdensity functional theoryFermi levelcatalytic propertyenergy gap difference
PACS:
O641.12
DOI:
10.3969/j.issn.1001-4616.2021.04.003
Abstract:
To investigate the configuration of Fe4P with optimal catalytic activity,according to the density functional theory,the energy gap difference,density of states diagram,HOMO-LUMO diagram of frontier orbit of Fe4P 8 optimized configurations are analyzed at B3LYP/lanl2dz quantum level,and Kupmann’s theorem is used,the following conclusions are drawn:cluster Fe4P has a strong ability to gain and lose electrons; the catalytic ability of binary state is similar,and the catalytic activity is stronger than that of quadruple state; configuration 1(2) has the smallest gap difference,the largest electrophilic index and electron affinity energy,and the HOMO and LUMO diagrams almost symmetrical distribution shows that the reaction activity and catalytic ability of the catalyst are the strongest,followed by configuration 3(4); configuration 5(4) has the largest energy gap difference,the largest electronegativity,the smallest electrophilic index and electron affinity energy,and the smallest area of HOMO and LUMO,which means that configuration 5(4) has the worst catalytic ability. The results show that configuration 1(2) is the optimal catalytic configuration of Fe4P.

References:

[1] DOMINKOVIC D F,BACEKOVIC I,PEDERSEN A S,et al. The future of transportation in sustainable energy systems:opportunities and barriers in a clean energy transition[J]. Renewable & sustainable energy reviews,2018,82(2):1823-1838.
[2]WALTER M G,WARREN E L,MCKONE J R,et al. Solar water splitting cells[J]. Chemical reviews,2010,110(11):6446-6473.
[3]MORALES-GUIO C G,STERN L A,HU X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical society reviews,2014,43(18):6555-6569.
[4]KUNHIRAMAN A K. Hydrogen evolution reaction catalyzed by platinum nanoislands decorated on three-dimensional nanocarbon hybrid[J]. Ionics,2019,25(8):3787-3797.
[5]ESPOSITO D V,HUNT S T,STOTTLEMYER A L,et al. Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates[J]. Angewandte chemie international edition,2010,49(51):9859-9862.
[6]TANG F M,SU H,ZHAO X,et al. Potential-driven surface active structure rearrangement over FeP@NC towards efficient electrocatalytic hydrogen evolution[J]. Physical chemistry chemical physics,2019,21(15):7918-7923.
[7]LIU M J,YANG L M,LIU T,et al. Fe2P/reduced grapheneoxide/Fe2P sandwich-structured nanowall arrays:a high-performance non-noble-metal electrocatalyst for hydrogen evolution[J]. Journal of materials chemistry,2017,5(18):8608-8615.
[8]LIN C,GAO Z F,YANG J H,et al. Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction[J]. Journal of materials chemistry,2018,6(15):6387-6392.
[9]YAN Y,ZHAO B,YI S H,et al. Assembling pore-rich FeP nanorods on the CNT backbone as an advanced electrocatalyst for oxygen evolution[J]. Journal of materials chemistry,2016,4(33):13005-13010.
[10]HE F,LI K,XIE G Y,et al. Theoretical insights on the catalytic activity and mechanism for oxygen reduction reaction at Fe and P codoped graphene[J]. Physical chemistry chemical physics,2016,18(18):12675-12681.
[11]LI G L,YUAN L F,CHEN W W,et al. Efficient hierarchically synthesized Fe2P nanoparticles embedded in an N,P-doped mesoporous carbon catalyst for the oxygen reduction reaction[J]. New journal of chemistry,2018,42(12):9488-9495.
[12]SINGH K P,BAE E J,YU J S. Fe-P:A new class of electroactive catalyst for oxygen reduction reaction[J]. Journal of the American chemical society,2015,137(9):3165-3168.
[13]ZHAO Z Y,LIU L L,ZHANG S T,et al. Phase diagram,stability and electronic properties of an Fe-P system under high pressure:a first principles study[J]. RSC advances,2017,7(26):15986-15991.
[14]BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of chemical physics,1993,98(7):5648-5652.
[15]秦渝,方志刚,张伟,等. 团簇Co3NiB催化析氢活性研究[J]. 江西师范大学学报(自然科学版),2020,44(1):56-62.
[16]李历红,方志刚,赵振宁,等. 团簇Ni3CoP电子性质与磁性研究[J]. 江西师范大学学报(自然科学版),2019,43(2):54-60.
[17]杨广丽,岳瑞英,赵健,等. 吸附在TiO2(110)表面的Au(n-1)Ag(n=1-5)团簇的第一性原理研究[J]. 南京师大学报(自然科学版),2016,39(2):38-43.
[18]YU X G. Hyperbolic multi-topology and the basic principle in quantum mechanics[J]. Advances in applied clifford algebras,1999,9(1):109-118.
[19]秦渝,方志刚,张伟,等. 团簇Co3NiB2催化性质研究[J]. 辽宁科技大学学报,2019,42(5):365-370.
[20]李雯博,方志刚,刘大永,等. 非晶态合金Co3B2稳定结构、组成和电子性质[J]. 辽宁科技大学学报,2016,39(2):113-118.
[21]廖薇,方志刚,赵振宁,等. 团簇Fe3Cr3的电子性质与成键[J]. 辽宁科技大学学报,2019,42(2):101-106.
[22]HAY P J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms[J]. Journal of chemical physics,1977,66(10):4377-4384.
[23]HAY P J,WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. Journal of chemical physics,1985,82(1):270-283.
[24]WATANABE K,NAKAYAMA T,MOTTL J. Ionization potentials of some molecules[J]. Journal of quantitative spectroscopy & radiative transfer,1962,2(4):369-382.
[25]KENDALL R A,DUNNING T H,HARRISON R J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions[J]. Journal of chemical physics,1992,96(9):6796-6806.
[26]PARR R G,DONNELLY R A,LEVY M,et al. Electronegativity:the density functional viewpoint[J]. Journal of chemical physics,1978,68(8):3801-3807.
[27]LORQUET J C. Ionization potential of ammonia—some implications concerning Koopman’s theorem[J]. Reviews of modern physics,1960,32(2):312-312.

Memo

Memo:
-
Last Update: 2021-12-15