[1] ZHAO X,SATOH Y,TAKAUJI H,et al. Robust adapted object detection under complex environment[C]//2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance. Woshington DC:IEEE,2011:261-266.
[2]REDMON J,FARHADI A. Yolov3:an incremental improvement[C]//Computer Vision and Pattern Recognition. Guangzhou,2018.
[3]SUHAIL A,JAYABALAN M,THIRUCHELVAM V. Convolutional neural network based object detection:a review[J]. Journal of critical reviews,2020,7(11):2020.
[4]REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis & machine intelligence,2017,39(6):1137-1149.
[5]张中宝,王洪元,张继,等. 基于Faster-RCNN的遥感图像飞机检测算法[J]. 南京师大学报(自然科学版),2018,41(4):79-86.
[6]HE K,GKIOXARI G,DOLLáR P,et al. Mask R-CNN[J]. IEEE transactions on pattern analysis & machine intelligence,2017,38(5):2961-2969.
[7]TIAN Z,SHEN C,CHEN H,et al. FCOS:fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seanl,Korea:IEEE,2020.
[8]LAW H,DENG J. CornerNet:detecting objects as paired keypoints[J]. International journal of computer vision,2018,31(10):734-750.
[9]REDMON J,FARHADI A. YOLO9000:better,faster,stronger[J]. IEEE conference on computer vision and pattern recognition,2017:6517-6525.
[10]ZHAO Z Q,ZHENG P,XU S,et al. Object detection with deep learning:a review[J]. IEEE transactions on neural networks and learning systems,2019,30(11):3212-3232.
[11]WONG J A,HARTIGANM A. Algorithm AS 136:a K-means clustering algorithm[J]. Journal of the royal statistical society,1979,28(1):100-108.
[12]JIAN M,WANG J,YU H,et al. Visual saliency detection by integrating spatial position prior of object with background cues[J]. Expert systems with applications,2020,168(11):1142-1153.
[13]夏晨星. 基于背景先验和目标信息的自底向上显著性检测方法研究[D]. 长沙:湖南大学,2019.
[14]ZHAO M,CHE X,LIU H,et al. Medical prior knowledge guided automatic detection of coronary arteries calcified plaque with cardiac CT[J]. Electronics,2020,9(12):2122-2134.
[15]ZHAO H,ZHANG Z. Improving neural network detection accuracy of electric power bushings in infrared images by hough transform[J]. Sensors,2020,20(10):2931-2941.
[16]BALLARD D H. Generalizing the hough transform to detect arbitrary shapes[J]. Pattern recognition,1981,13(2):111-122.
[17]赵振兵,李延旭,甄珍,等. 结合KL散度和形状约束的Faster R-CNN典型金具检测方法[J]. 高电压技术,2020,46(9):3018-3026.
[18]REZATOFIGHI H,TSOI N,GWAK J Y,et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Xi’an:IEEE,2019.
[19]ZHENG Z,WANG P,LIU W,et al. Distance-IoU loss:faster and better learning for bounding box regression[C]//AAAI Conference on Artificial Intelligence. New York,2020.
[20]HE K M,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,America:2016.
[21]ZHANG K,ZUO W,CHEN Y,et al. Beyond a gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE transactions on image processing,2016,26(7):3142-3155.
[22]WANG J Q,CHEN K,YANG S,et al. Region proposal by guided anchoring[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Xi’an,2019.
[23]ZHANG S,CHI C,YAO Y,et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,America:IEEE,2020.
[24]KONG T,SUN F,LIU H,et al. FoveaBox:beyound anchor-based object detection[J]. IEEE transactions on image processing,2020,29:7389-7398.
[25]PANG J,CHEN K,SHI J,et al. Libra R-CNN:towards balanced learning for object detection[C]//Conference on Computer Vision and Pattrn Recognition. Seattle,America,2020.
[26]LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[J]. IEEE transactions on pattern analysis & machine intelligence,2020,42(2):318-327.
[27]LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//European Conference on Computer Vision. Amsterdam Netherlands,2016.
[28]FERGUS R,TAYLOR G W,ZEILER M D. Adaptive deconvolutional networks for mid and high level feature learning[C]//International Conference on Computer Vision. Shenzhen:IEEE Computer Society,2011.