[1] 袁瑶,周显礼. 乳腺癌超声特征与腋窝淋巴结转移相关性的研究进展[J]. 实用肿瘤学杂志,2020,34(6):576-580.
[2]李智博,周军. 超声对乳腺癌腋窝淋巴结状态评估的应用进展[J]. 实用医学杂志,2020,36(22):3161-3165.
[3]LIU S F,WANG Y,YANG X,et al. Deep learning in medical ultrasound analysis:a review[J]. Engineering,2019,5(2):261-275.
[4]贾海霞. 超声检查在乳腺癌腋窝淋巴结转移中的应用及声像特征研究[J]. 现代医药卫生,2020,36(17):2790-2792.
[5]黄哲兰. 分析超声诊断乳腺癌腋窝淋巴结转移的影像学表现的价值[J]. 影像研究与医学应用,2020,4(21):62-64.
[6]金华,罗伟权,纪宗萍,等. 乳腺癌超声影像组学图像特征Logistic回归方程预测腋窝淋巴结转移风险[J]. 中国超声医学杂志,2021,37(2):139-142.
[7]LIU D M,LAN Y J,ZHANG L,et al. Nomograms for predicting axillary lymph node status reconciled with preoperative breast ultrasound images[J]. Frontiers in oncology,2021,11:567648.
[8]SUN Q C,LIN X N,ZHAO Y S,et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images:don’t forget the peritumoral region[J]. Frontiers in oncology,2020,10:53.
[9]ZHOU L Q,WU X L,HUANG S Y,et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology,2019,294(1):19-28.
[10]ZHENG X Y,YAO Z,HUANG Y N,et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nature communications,2020,11(1):1236.
[11]LIN Y,ZHANG Y Z,CHEN J X,et al. Suggestive annotation:a deep active learning framework for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,Quebec City,Canada,2017.Cham:Springer,2017:399-407.
[12]ZHANG Y Z,YING M T C,LIN Y,et al. Coarse-to-fine stacked fully convolutional nets for lymph node segmentation in ultrasound images[C]//IEEE International Conference on Bioinformatics & Biomedicine,Shenzhen,China,2016. Piscataway:IEEE,2016:443-448.
[13]RONNEBERGER O,FISCHER P,BROX T. U-net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,Munich Germany,2015.Cham:Springer,2015:234-241.