|Table of Contents|

Lp,q Estimation of a Transport Density(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2022年01期
Page:
8-11
Research Field:
·数学·
Publishing date:

Info

Title:
Lp,q Estimation of a Transport Density
Author(s):
Chen Ping
(School of Mathematics and Information Technology,Jiangsu Second Normal University,Nanjing 210013,China)
Keywords:
Lpq estimatetransport densitydisplacement interpolations
PACS:
O186.14
DOI:
10.3969/j.issn.1001-4616.2022.01.002
Abstract:
The paper presents the absolute continuity and Lp,q summability of a transport density σγ associated to an optimal transport plan γ between two probability measures μ and v. More precisely,σγ∈Lp,q holds if μ∈Lp,q where 1≤p<+∞,1≤q<+∞ and v has a finite support set. The main methods we used include the equivalent redefinition of σγ by displacement interpolations μt,the relationship inequality between σγ and μt,and the Lp,q estimation of such interpolations μt.

References:

[1] AMBROSIO L. Lectures notes on optimal transport problems[M]. Berlin Heidelberg:Springer Science and Business Media,2003.
[2]DWEIK S. Lp,q estimates on the transport density[J]. Communications on pure & applied analysis,2019,18(6):3001-3009.
[3]DWEIK S,SANTAMBROGIO F. Lp bounds for boundary-to-boundary transport densities,and W1,p bounds for the BV least gradient problem in 2D[J]. Calculus of variations and partial differential equations,2019,58:1-18.
[4]SANTAMBROGIO F. Absolute continuity and summability of optimal transfort densities:simpler proofs and new estimates[J]. Calculus of variations and partial differential equations,2009,36(3):343-354.
[5]SANTAMBROGIO F. Optimal transport for applied mathematicians:calculus of variations,PDEs,and modeling[M]. Switzerland:Birk?ser,2015.
[6]VILLANI C. Optimal transport,old and new[M]. New York:Springer Science and Business Media,2008.
[7]CHAMPION T,DE PASCALE L. The Monge problem for strictly convex norms in Rd[J]. Journal of the European Mathematical Society,2010,12:1355-1369.
[8]陈平. Heisenberg群上内插的L范数估计[J]. 南京师大学报(自然科学版),2020,43(2):12-15.
[9]CHEN P,JIANG F D,YANG X P. Optimal transportation in Rn范数估计[J]. 南京师大学报(自然科学版),2020,43(2):12-15.
[9]CHEN P,JIANG F D,YANG X P. Optimal transportation in r a distance cost with a convex constraint[J]. Zeitschrift für angewandte mathematik und physik,2015(66):587-606.

Memo

Memo:
-
Last Update: 1900-01-01