[1] AMBROSIO L. Lectures notes on optimal transport problems[M]. Berlin Heidelberg:Springer Science and Business Media,2003.
[2]DWEIK S. Lp,q estimates on the transport density[J]. Communications on pure & applied analysis,2019,18(6):3001-3009.
[3]DWEIK S,SANTAMBROGIO F. Lp bounds for boundary-to-boundary transport densities,and W1,p bounds for the BV least gradient problem in 2D[J]. Calculus of variations and partial differential equations,2019,58:1-18.
[4]SANTAMBROGIO F. Absolute continuity and summability of optimal transfort densities:simpler proofs and new estimates[J]. Calculus of variations and partial differential equations,2009,36(3):343-354.
[5]SANTAMBROGIO F. Optimal transport for applied mathematicians:calculus of variations,PDEs,and modeling[M]. Switzerland:Birk?ser,2015.
[6]VILLANI C. Optimal transport,old and new[M]. New York:Springer Science and Business Media,2008.
[7]CHAMPION T,DE PASCALE L. The Monge problem for strictly convex norms in Rd[J]. Journal of the European Mathematical Society,2010,12:1355-1369.
[8]陈平. Heisenberg群上内插的L∞范数估计[J]. 南京师大学报(自然科学版),2020,43(2):12-15.
[9]CHEN P,JIANG F D,YANG X P. Optimal transportation in Rn∞范数估计[J]. 南京师大学报(自然科学版),2020,43(2):12-15.
[9]CHEN P,JIANG F D,YANG X P. Optimal transportation in r a distance cost with a convex constraint[J]. Zeitschrift für angewandte mathematik und physik,2015(66):587-606.