[1] JURECZKO M,MADEYSKI L. Cross-project defect prediction with respect to code ownership model:an empirical study[J]. E-informatica software engineering journal,2015,9(1):21-35.
[2]TURHAN B. On the dataset shift problem in software engineering prediction models[J]. Empirical software engineering,2012,17(1/2):62-74.
[3]ZIMMERMANN T,NAGAPPAN N,GALL H,et a1. Cross-project defect prediction:a large scale experiment on data vs. Domain vs. process[C]//In Proceedings of the 7th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Software Engineering. Amsterdam:Netherland,2009:91-100.
[4]TURHAN B,MENZIES T,BENER A B,et a1. On the relative value of cross-company and within-company data for defect prediction[J]. Empirical software engineering,2009,14(5):540-578.
[5]HE P,LI BING,ZHANG D G,et a1. Simplification of training data for cross-project defect prediction[J]. arXiv:1405.0773,2014.
[6]PETERS F,MENZIES T,MARCUS A. Better cross company defect prediction[C]//Mining Software Repositories. San Francisco:IEEE,2013:409-418.
[7]李勇,黄志球,王勇,等. 基于多源数据的跨项目软件缺陷预测方法[J]. 吉林大学学报(工学版),2016,46(6):2034-2041.
[8]NAM J,PAN S J,KIM S. Transfer defect learning[C]//Proceedings of the International Conference on Software Engineering. San Francisco:IEEE,2013:382-391.
[9]ZHAO H Q,ZENG X P,ZHANG J S. Adaptive reduced feedback FLNN filter for active control of nonlinear noise processes[J]. Signal processing,2010,90(3):834-847.
[10]MA Y,LUO G,ZENG X,et al. Transfer learning for cross-company software defect prediction[J]. Information & software technology,2012,54(3):248-256.
[11]PENG L,YANG B,CHEN Y,et al. Data gravitation based classification[J]. Information ences,2009,179(6):809-819.
[12]CHEN L,FANG B,SHANG Z,et al. Negative samples reduction in cross-company software defects prediction[J]. Information & software technology,2015,62:67-77.
[13]DAI W Y,YANG Q,XUE G,et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine Learning-ICML’07. Oregon:USA,2007.
[14]周志华. 机器学习[M]. 北京:清华大学出版社,2016.
[15]LIN J. Divergence measures based on the Shannon entropy[J]. IEEE transactions on information theory,2002,37(1):145-151.
[16]HERSHEY J R,OLSEN P A. Approximating the Kullback Leibler divergence between gaussian mixture models[C]//IEEE International Conference on Acoustics. Honolulu HI:IEEE,2007.
[17]WANG Q,KULKARNI S R,VERD S. Divergence estimation for multidimensional densities via-nearest-neighbor distances[J]. IEEE transactions on information theory,2009,55(5):2392-2405.
[18]O’HAGAN,ADRIAN A,MURPHY T B,GORMLEY I C,et al. Clustering with the multivariate normal inverse Gaussian distribution[J]. Computational stats & data analysis,2016,93(C):18-30.
[19]JURECZKO M,MADEYSKI L. Towards identifying software project clusters with regard to defect prediction[C]//Proceedings of the 6th International Conference on Predictive Models in Software Engineering-PROMISE’ 10. Timisoars:Romania,2010.
[20]GRETTON A,SCH?KOPF B,HUANG J. Correcting sample selection Bias by unlabeled date[J]. Advances in neural information processing systems,2007,19:601-608.
[21]QIU S,LU L,JIANG S. Multiple components weights model for cross-project defect prediction[J]. IET software,2018,12(4):345-355.