|Table of Contents|

Particle Swarm Optimization Algorithm With Improved Particle Velocity and Position Update Formula(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2022年01期
Page:
118-126
Research Field:
·计算机科学与技术·
Publishing date:

Info

Title:
Particle Swarm Optimization Algorithm With Improved Particle Velocity and Position Update Formula
Author(s):
Li ErchaoGao Zhenlei
(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China)
Keywords:
particle swarm optimizationadaptiveLogistic chaosconvergence rateoptimization precision
PACS:
TP273
DOI:
10.3969/j.issn.1001-4616.2022.01.017
Abstract:
Particle swarm optimization algorithm with improved particle velocity and position update formula(IPSO-VP)is proposed to solve the problems of low solution precision,poor local search ability and slow convergence rate in the later stage of evolution. IPSO-VP algorithm proposes an adaptive particle velocity and position update strategy,which adopts the inertia weight based on Logistic chaos,which is nonlinear,to accelerate the convergence rate,balance the global and local search ability of the algorithm,and improve the convergence precision. Finally,the proposed algorithm is compared with six improved particle swarm optimization algorithms on twelve test functions.Simulation results show that the proposed algorithm is superior to the other six improved particle swarm optimization algorithms in terms of convergence rate and optimization precision.

References:

[1] KENNEDY J,EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks,Perth,WA,Australia. IEEE,1995,4:1942-1948.
[2]LIAN J,YU W,XIAO K,et al. Cubic spline interpolation-based robot path planning using a chaotic adaptive particle swarm optimization algorithm[J]. Mathematical problems in engineering,2020(3):1-20.
[3]居佳琪,王琦,唐小波,等. 基于双重粒子群算法的电动汽车参与配网优化调度[J]. 南京师范大学学报(工程技术版),2018,18(1):11-23.
[4]程泽,董梦男,杨添剀,等. 基于自适应混沌粒子群算法的光伏电池模型参数辨识[J]. 电工技术学报,2014,29(9):245-252.
[5]韦苗苗,江铭炎. 基于粒子群优化算法的多阈值图像分割[J]. 山东大学学报(工学版),2005,35(6):118-121.
[6]王凌,刘波. 微粒群优化与调度算法[M]. 北京:清华大学出版社,2008.
[7]SHI Y,EBERHART R. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence(Cat. No. 98TH8360),Anchorage,AK,USA. 1998,4:69-73.
[8]LIU H,ZHANG X W,TU L P. A modified particle swarm optimization using adaptive strategy[J]. Expert systems with applications,2020,152:113353.
[9]姜建国,田旻,王向前,等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报,2012,39(4):74-80.
[10]顾明亮,李旻. 基于动态调整惯性权重的混合粒子群算法[J]. 计算机与现代化,2018(6):25-29.
[11]DEEP K,BANSAL J C. Mean particle swarm optimisation for function optimization[J]. International journal of computational intelligence studies,2009,1(1):72-92.
[12]胡旺,李志蜀. 一种更简化而高效的粒子群优化算法[J]. 软件学报,2007,18(4):861-868.
[13]LIU H R,CUI J C,LU Z D,et al. A hierarchical simple particle swarm optimization with mean dimensional information[J]. Applied soft computing,2019,76:712-725.
[14]陆松建,司伟立,韩娟,等. 逃逸均值简化粒子群优化算法[J]. 计算机工程与设计,2020,41(9):2623-2629.
[15]ZHANG X W,LIU H,ZHANG T,et al. Terminal crossover and steering-based particle swarm optimization algorithm with disturbance[J]. Applied soft computing,2019,85:105841.
[16]CHENG R,JIN Y. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information sciences,2015,291:43-60.
[17]GAO W F,LIU S Y,HUANG L L. Particle swarm optimization with chaotic opposition-based population initialization and stochastic search technique[J]. Communications in nonlinear science & numerical simulation,2012,17(11):4316-4327.
[18]吴润秀,孙辉,朱德刚,等. 具有高斯扰动的最优粒子引导粒子群优化算法[J]. 小型微型计算机系统,2016,37(1):146-151.

Memo

Memo:
-
Last Update: 1900-01-01