|Table of Contents|

Magnetoacoustic Harmonic Imaging Based on Magnetic Nanoparticles(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2022年02期
Page:
1-8
Research Field:
·物理学·
Publishing date:

Info

Title:
Magnetoacoustic Harmonic Imaging Based on Magnetic Nanoparticles
Author(s):
Huang Yang1Cao Ruijie1Guo Gepu1Ma Qingyu1Guo Yuqing21Wang Jun2
(1.School of Computer and Electronic Information/School of Artificial Intelligence,Nanjing Normal University,Nanjing 210023,China)(2.Jiangsu Nengjian Electromechanical Industrial Co.,Ltd,Taizhou 225327,China)
Keywords:
magnetoacoustic harmonic imagingmagnetic nanoparticles(MNP)conical coretoroidal permalloy
PACS:
O441.3
DOI:
10.3969/j.issn.1001-4616.2022.02.001
Abstract:
Due to the advantages of the good magnetic response,biocompatibility and biodegradability,magnetic nanoparticles(MNPs)have been widely used in early tumor diagnoses and treatments. In this paper,an imaging method based on the magnetoacoustic harmonic response of MNPs is studied by introducing the convergence effect of a conical iron cone. Firstly,the electromagnetic excitation model with a conical core is constructed to generate a focused effective magnetic field of high magnetic field intensity and its gradient. Based on the theories of the magnetic moment,mechanical vibration and acoustic radiation of MNPs,the magnetoacoustic harmonic pressure is analyzed and derived. Then,by considering the possible phenomena of a non-ideal cone tip,the influence of the flat top on the size of the effective magnetic volume,acoustic pressure and penetration depth is studied. The favorable results show that the non-ideal cone-tip model can be used to increase the pressure of the magnetoacoustic harmonic response with a deeper penetration,while leading to a decreased imaging accuracy to a certain extent. Finally,by introducing the magnetic shielding effect of a toroidal permalloy,the spatial resolution and the contrast of the magnetoacoustic harmonic imaging are further improved,exhibiting prosperous application potentials in the superficial imaging for biological tissues.

References:

[1] LI Y L,SUN B H. Nano-delivery materials:review of development and application in Drug/Gene transport[J]. Key engineering materials,2019,803:158-166.
[2]LABHASETWAR V. Nanotechnology for drug and gene therapy:the importance of understanding molecular mechanisms of delivery[J]. Current opinion in biotechnology,2005,16(6):674-680.
[3]KUMARI A,KUMAR V,YADAV S K. Therapeutic nanoparticles and associated toxicity[J]. Current nanoscience,2011,7(3):389-395.
[4]SLAISOVA R,RADKA K,JARKOVSKY J,et al. Contrast-enhanced ultrasonography compared to gray-scale and power Doppler in the diagnosis of peripheral lymphadenopathy[J]. European journal of radiology,2013,82(4):693-698.
[5]FERRAIOLI G,MELONI M F. Contrast-enhanced ultrasonography of the liver using SonoVue[J]. Ultrasonography,2018,37(1):25-35.
[6]章康宁,王佳伟,马青玉. 双频激励超声造影剂微气泡差频特性的理论和实验研究[J]. 南京师大学报(自然科学版),2015,38(2):30-37.
[7]GABRIEL M,TOMCZAK J,SNOCH-ZIOLKIEWICZ M,et al. Comparison of superb micro-vascular ultrasound imaging(SMI)and contrast-enhanced ultrasound(CEUS)for detection of endoleaks after endovascular aneurysm repair(EVAR)[J]. American journal of case reports,2016,17:43-46.
[8]LEE D H,LEE J Y,HAN J K. Superb microvascular imaging technology for ultrasound examinations:initial experiences for hepatic tumors[J]. European journal of radiology,2016,85(11):2090-2095.
[9]ZHAN J,DIAO X H,JIN J M,et al. Superb microvascular imaging—a new vascular detecting ultrasonographic technique for avascular breast masses:a preliminary study[J]. European journal of radiology,2016,85(5):915-921.
[10]CHOI Y J,LEE J H,LIM H K,et al. Quantitative shear wave elastography in the uation of metastatic cervical lymph nodes[J]. Ultrasound in medicine & biology,2013,39(6):935-940.
[11]TAN S,MIAO L Y,CUI L G,et al. Value of shear wave elastography versus contrast-enhanced sonography for differentiating benign and malignant superficial lymphadenopathy unexplained by conventional sonography[J]. Journal of ultrasound in medicine,2017,36(1):189-199.
[12]YANG Z Y,CHEN J H,YAO J J,et al. Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo[J]. Optics express,2014,22(2):1500-1511.
[13]XU M H,WANG L V. Photoacoustic imaging in biomedicine[J]. Review of scientific instruments,2006,77(4):305-598.
[14]高雅,郭各朴,马青玉. 基于系统矩阵优化的二维磁性粒子成像研究[J]. 南京师大学报(自然科学版),2019,42(2):73-80.
[15]XING R J,LIU G,ZHU J H,et al. Functional magnetic nanoparticles for non-viral gene delivery and MR imaging[J]. Pharmaceutical research,2014,31(6):1377-1389.
[16]SPYRIDOPOULOU K,MAKRIDIS A,MANIOTIS N,et al. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells[J]. Nanotechnology,2018,29(17):175101.
[17]GLEICH B,WEIZENECKER R. Tomographic imaging using the nonlinear response of magnetic particles[J]. Nature,2005,435(7046):1214-1217.
[18]TAY Z W,GOODWILL P W,HENSLEY D W,et al. A high-throughput,arbitrary-waveform,MPI spectrometer and relaxometer for comprehensive magnetic particle optimization and characterization[J]. Scientific reports,2016,6(1):34180.
[19]HU G,HE B. Magnetoacoustic imaging of magnetic iron oxide nanoparticles embedded in biological tissues with microsecond magnetic stimulation[J]. Applied physics letters,2012,100(1):13704.
[20]戴思捷,周䶮,丁鹤平,等. 基于组织电阻抗差异的磁声电检测技术[J]. 南京师大学报(自然科学版),2018,41(1):35-41.
[21]MARIAPPAN L,QI S,JIANG C L,et al. Magneto acoustic tomography with short pulsed magnetic field for in-vivo imaging of magnetic iron oxide nanoparticles[J]. Nanomedicine nanotechnology biology & medicine,2016,12(3):689-699.
[22]GUO G G,GAO Y,LI Y Z,et al. Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction[J]. Chinese physics B,2020,29(3):034302.
[23]ZHOU Y,WANG J W,SUN X D,et al. Transducer selection and application in magnetoacoustic tomography with magnetic induction[J]. Journal of applied physics,2016,119(9):094903.
[24]SUN X,FANG D W,ZHANG D,et al. Acoustic dipole radiation based electrical impedance contrast imaging approach of magnetoacoustic tomography with magnetic induction[J]. Medical physics,2013,40(5):052902.
[25]蔡文魁,沈锺杰,赵慧敏,等. 电流调制激光自混合光栅干涉位移测量研究[J]. 南京师大学报(自然科学版),2020,43(3):34-39.
[26]CAO R J,HUANG Y,GUO G P,et al. Performance improvement of magnetoacoustic harmonic imaging for magnetic nanoparticles based on the electromagnetic excitation with a conical core[J]. Applied acoustics,2021,180:108105.
[27]何文强,樊通声,王巍. 容型磁阻抗效应的退磁因子影响研究[J]. 南京师大学报(自然科学版),2018,41(2):33-38.
[28]陶 进,潘鹏飞. 电/压磁条环磁电复合材料的逆磁电效应[J]. 南京师大学报(自然科学版),2017,40(4):64-69.
[29]IRISAWA D,IMAI K,SHINTOMI K,et al. Superconducting magnetic shield for MEG coupled with permalloy PC[J]. Electrical engineering in Japan,2019,207(1):3-14.
[30]MURASE K,TAKATA H,TAKEUCHI Y,et al. Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field[J]. Physica medica:European journal of medical physics,2013,29(6):624-630.
[31]杨靖宇,王维,王明睿. 于磁谐振式无线电能传输系统的E类功率放大器研究[J]. 南京师范大学学报(工程技术版),2019,19(3):72-79.
[32]PANAGIOTOPOULOS N,DUSCHKA R L,AHLBORG M,et al. Magnetic particle imaging:current developments and future directions[J]. International journal of nanomedicine,2015,10:3097-3114.

Memo

Memo:
-
Last Update: 1900-01-01