|Table of Contents|

Polyphenols Response and Composition of Walnut Fruit at Different Parts Under Different Solvents Immersion(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2022年03期
Page:
35-45
Research Field:
化学
Publishing date:

Info

Title:
Polyphenols Response and Composition of Walnut Fruit at Different Parts Under Different Solvents Immersion
Author(s):
Wang Jihui12Geng Yangyang12Liu Yana12Zhang Shixin12Hu Bokai12Liang Mei12Tan Huamei12He Jiali12
(1.Guizhou Institute of Walnut,Guiyang 550005,China)(2.Guizhou Academy of Forestry,Guiyang 550005,China)
Keywords:
ultrasound effectsolventwalnut fruitpolyphenolscomposition
PACS:
TS255.1
DOI:
10.3969/j.issn.1001-4616.2022.03.006
Abstract:
Studying the change polyphenols content of walnut diaphragma juglandis fructus and walnut shell to provide technical support for the utilization of walnut by-products. Analyzing the change and composition of polyphenols different parts of walnut fruit based on ultrasound effect by different solvent extraction. Secondly,the composition of polyphenols was identified by HPLC,and then the microstructure was observed by SEM. Walnut diaphragma juglandis fructus and shell polyphenols extraction conditions were optimized by Multivariate Quadratic Regression Equation Model. The better extraction conditions were as follows:solid to liquid ratio 1:59(g·mL-1),treatment time 31 min,methanol concentration 67%,treatment temperature 61 ℃,ultrasound power 250 W. At this time,under methanol extraction the polyphenol yield of diaphragma juglandis fructus was(72.7±1.57)mg·g-1. The regression equation was established:Y=71.12-0.079X1+0.36X2-0.13X3+0.40X4-0.91X1X2-0.17X1X3-0.31X1X4-0.45X2X3+0.23X2X4-0.60X3X4-2.10X21-1.42X22-0.68X23-1.35X24; solid to liquid ratio 1:85(g·mL-1),treatment time 29 min,treatment temperature 61 ℃,ultrasound power 250 W. At this time,under water extraction polyphenol yield of diaphragma juglandis fructus was(58.06±1.62)mg·g-1. The regression equation was established:Y=53.96+2.19X1-2.31X2+1.25X4-1.08X1X2+0.66X1X4-0.62X2X4-2.68X21-5.76X22-2.91X24. Solid to liquid ratio 1:60(g·mL-1),treatment time 31 min,methanol concentration 67%,treatment temperature 61 ℃,ultrasound power 300 W. At this time,under methanol extraction polyphenol yield of walnut shell was(20.04±1.32)mg·g-1. The regression equation was established:Y=19.58+0.047X1+0.35X2-0.096X3+0.55X4-0.42X1X2-0.39X1X3+0.038X1X4-0.52X2X3+0.27X2X4-0.35X3X4-1.74X21-1.28X22-0.59X23-1.21X24; solid to liquid ratio 1:90(g·mL-1),treatment time 37min,treatment temperature 55 ℃,ultrasound power 250 W. At this time,under water extraction polyphenol yield of walnut shell was(15.43±1.18)mg·g-1. The regression equation was established:Y=13.77+0.45X1-2.18X2+0.36X4-1.08X1X2-0.42X1X4+0.13X2X4-0.29X21-3.20X22+0.22X24. Through the HPLC analysis,under methanol and water extraction,two common kinds of monophenol identified in diaphragma juglandis fructus were gallic acid and catechin,gallic acid content was higher in water extraction and catechin content was higher in methanol extraction. Two common kinds of monophenol identified in the walnut shell were gallic acid and vanillic acid,gallic acid content was higher than methanol extraction,while the vanillic acid content is not much different between methanol and water extraction. The polyphenol yield was significantly higher in diaphragma juglandis fructus than walnut shell,the extraction effect of methanol solution is significantly better than that of pure water extraction. Scanning electron microscope of the surface of diaphragma juglandis fructus and walnut shell proved that ultrasound effect can significantly damage the surface tissue structures of diaphragma juglandis fructus and walnut shell,to promote the polyphenols to release more and faster,and dissolve into the extraction solution.

References:

[1]李瑞,梁永林,阚欢,等. 响应面法优化云南核桃分心木多酚提取工艺[J]. 西南林业大学学报(自然科学),2021,41(2):159-165.
[2]洪茜茜,叶永丽,张银志,等. 核桃分心木化学成分及功能活性研究进展[J]. 食品研究与开发,2021,42(7):194-202.
[3]王艳梅,高莉,刘梦,等. 核桃隔膜化学成分定性研究[J]. 食品工业科技,2008(12):123-124.
[4]赵国建,王向东,王焕.提取方法对核桃青皮多酚提取效果的影响[J]. 农业工程学报,2012,28(S1):351-355.
[5]谢佳函,刘回民,刘美宏,等. 红豆皮多酚提取工艺优化及抗氧化活性分析[J]. 中国食品学报,2020,20(1):147-157.
[6]SATO S,HORI Y,YAMATE J,et al. Protective effect of dietary azuki bean(Vigna angularis)seed coats against renal interstitial fibrosis of rats induced by cisplatin[J]. Nutrition,2005,21(4):504-511.
[7]GAN R Y,DENG Z Q,YAN A X,et al. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects[J]. LWT —Food science and technology,2016,73(11):168-177.
[8]MUKAI Y,SUN Y,SATO S. Azuki bean polyphenols intake during lactation upregulate AMPK in male rat offspring exposed to fetal malnutrition[J]. Nutrition,2013,29(1):291-297.
[9]VINSON J A,LIANG X,PROCH J,et al. Polyphenol antioxidants in citrus juices:In vitro and in vivo studies relevant to heart disease[J]. Advances in experimental medicine and biology,2002,505:113-122.
[10]PALMADURAN S A,VLASSOPOULOS A,LEAN M,et al. Nutritional intervention and impact of polyphenol on glycohemoglobin(HbA1c)in non-diabetic and type 2 diabetic subjects:Systematic review and meta-analysis[J]. Critical reviews in food science and nutrition,2017,57(5):975-986.
[11]MA X,WEI Q,ZHANG S,et al. Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid[J]. Journal of analytical and applied pyrolysis,2011,91(2):338-343.
[12]王新然. 核桃瓣膜多酚类化合物组成及生物活性分析[D]. 西安:陕西师范大学,2019.
[13]邢颖,刘芳. 超声波和纤维素酶法提取核桃分心木中的黄酮、多酚及其抗氧化活性分析[J]. 粮食与油脂,2020,33(11):111-115.
[14]梁杏. 核桃饼粕多酚提取纯化及其抗氧化和降脂活性初步研究[D]. 昆明:云南中医学院,2016.
[15]史斌斌,张文娥,李雪,等. 铁核桃叶片多酚类物质含量及其抗氧化活性[J]. 园艺学报,2017,44(1):23-32.
[16]李月,纪乃茹,李健,等. 红毛藻多酚提取工艺优化及抗氧化活性[J]. 食品工业科技,2021,42(7):156-161.
[17]黄浩,秦高一鑫,陈贵堂,等. 响应面法优化黄芪下脚料蛋白提取工艺[J]. 食品工业科技,2017,38(23):170-176.
[18]谢蓝华,陈佳,张淑谊,等. 美藤果蛋白的提取工艺及氨基酸组成分析[J]. 中国油脂,2017,42(5):40-44.
[19]JOVANOVIC A A,DORDEVIC V B,ZDUNIC G M,et al. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration,heat- and ultrasound-assisted techniques[J]. Separation and purification technology,2017,179(5):369-380.
[20]JOKIC S,VELIC D,BILIC M,et al. Modelling of the process of solid-liquid extractionof total polyphenols from soybeans[J]. Czech journal of food sciences,2010,28(3):206-212.
[21]朱霞,刘育聪,吴振琳,等. 响应面法优化超声波提取核桃青皮多酚的工艺研究[J]. 食品科技,2014,39(11):207-211.
[22]LI ZX,LI YR,LEI G,et al. Study on ultrasonic extraction of polyphenols in apple pomace and its antioxidational effects[J]. Journal of Northwest Science-Technology University of Agriculture and Forestry,2005,33(8):131-134.
[23]TEH S S,BIRCH E J. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp,flax and canola seed cakes[J]. Ultrasonics sonochemistry,2014,21(1):346-353.
[24]刘洋坪,王建辉,刘冬敏,等. 莲衣粉多酚提取工艺优化及体外抗氧化活性研究[J]. 核农学报,2021,35(6):1376-1384.
[25]BHEBHE M,TN FÜLLER,CHIPURURA B,et al. Effect of solvent type on total phenolic content and free radical scavenging activity of black tea and herbal infusions[J]. Food analytical methods,2016,9(4):1060-1067.
[26]BOUSSETTA N,TURK M,TAEYE C D,et al. Effect of high voltage electrical discharges,heating and ethanol concentration on the extraction of total polyphenols and lignans from flaxseed cake[J]. Industrial crops and products,2013,49(8):690-696.
[27]邓永,刘东红. 超声处理对石榴皮多酚提取效果的影响[J]. 食品科学技术学报,2021,39(1):65-69.
[28]D'ALESSANDRO L G,KRIAA K,NIKOV I,et al. Ultrasound assisted extraction of polyphenols from black chokeberry[J]. Separation and purification technology,2012,93(6):42-47.
[29]FALLEH H,KSOURI R,LUCCHESSI M E,et al. Ultrasound-assisted extraction:effect of extraction time and solvent power on the levels of polyphenols and antioxidant activity of Mesembryanthemum edule L. Aizoaceae Shoots[J]. Tropical journal of pharmaceutical research,2012,11(2):243-249.
[30]周晔,王伟,王成章,等. 核桃属(Juglans)植物多酚类物质研究进展[J]. 南京林业大学学报(自然科学版),2013,37(5):146-152.
[31]王建超,王卿,施文昊,等. 响应面分析法优化枇杷叶多酚提取工艺[J]. 热带作物学报,2015,36(2):384-390.
[32]缪福俊,宁德鲁. 核桃多酚类物质生物活性研究进展[J]. 中国油脂,2021,46(1):48-51.
[33]何春梅,陈冠林,俞憬,等. 核桃壳多酚的提取、含量测定及其抗氧化活性研究[J]. 广东药学院学报,2016,32(2):153-158.
[34]孙海涛,邵信儒,姜瑞平,等. 超声波-微波联合提取山核桃壳多酚及其稳定性[J]. 北方园艺,2015(24):135-139.
[35]刘静,黄慧福,刘继华,等. 响应面优化核桃分心木多酚超声辅助提取工艺[J]. 食品研究与开发,2020,41(23):155-160,191.
[36]陈冠林,刘学文,韩门娣,等. 分心木多酚提取工艺及其抗氧化活性研究[J]. 食品研究与开发,2017,38(5):67-71.

Memo

Memo:
-
Last Update: 2022-09-15