|Table of Contents|

Stochastic Resonance of Compound Weak Signal(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2022年04期
Page:
26-34
Research Field:
物理学
Publishing date:

Info

Title:
Stochastic Resonance of Compound Weak Signal
Author(s):
Zha Jindao1Li Chunbiao2Lei Tengfei34
(1.Jiangsu Vocational Institute of Commerce,Nanjing 211168,China)
(2.School of Artificial Intelligence,Nanjing University of Information Science & Technology,Nanjing 210044,China)
(3.Collaborative Innovation Center of Memristive Computing Application,Qilu Institute of Technology,Jinan 250200,China)
(4.Engineering Research Center of Shandong Sino-German Smart Factory Application,Jinan 250200,China)
Keywords:
stochastic resonanceLangevin equationsignal-to-noise ratiodifferential evolution algorithm
PACS:
TH133.33
DOI:
10.3969/j.issn.1001-4616.2022.04.005
Abstract:
A unified definition of signal-to-noise ratio for the stochastic resonance of compound periodic and aperiodic weak signal is proposed according to the adiabatic approximation theory,based on that the fitness function to optimize the parameters of the stochastic resonance system is constructed by differential evolution algorithm. Theoretical analysis and numerical simulation proves the effectiveness of the proposed method of stochastic resonance. When the input signal contains multiple-frequency weak signals,the specific frequency signal with larger energy can be separated out; If the input weak compound signal contains multiple-frequency components modulated by signum function,the one with larger energy can also be extracted effectively; If the input weak compound signal contains multiple-pulse signals with almost approximate energy,all of them can be extracted effectively.

References:

[1]MCNAMARA B,WIESENFELD K. Theory of stochastic resonance[J]. Physical review A,1989,39(9):4854-4869.
[2]刘广凯,全厚德,康艳梅,等. 一种随机共振增强正弦信号的二次多项式接收方法[J]. 物理学报,2019,68:210501.
[3]JUNG P,HÄNGGI P. Amplification of small signals via stochastic resonance[J]. Physical review A,1991,44(12):8032-8042.
[4]GAMMAITONI L,MARCHESONI F,MENICHELLA-SAETTA E,et al. Stochastic resonance in bistable systems[J]. Physical review letters,1989,62:349-352.
[5]ZHOU T,MOSS F. Analog simulations of stochastic resonance[J]. Physical review A,1990,41(8):4255-4264.
[6]柏顺,颜夕宏,张生平,等. 基于梅尔频率倒谱系数与短时能量的低信噪比语音端点检测[J]. 南京师大学报(自然科学版),2021,44(2):117-120.
[7]马宏陆,葛琳琳,牛强,等. 一种基于改进EMD 的风机振动信号异常检测方法[J]. 南京师大学报(自然科学版),2017,40(1):55-64.
[8]乔岩茹,陈健龙,侯文. 基于布谷鸟算法优化随机共振参数的轴承故障检测算法[J]. 电子测量技术,2021,44(20):88-93.
[9]崔伟成,李伟,孟凡磊,等. 基于果蝇优化算法的自适应随机共振轴承故障信号检测方法[J]. 振动与冲击,2016,35(10):96-100.
[10]刘进军,冷永刚,张雨阳等. 势函数特征参数调节随机共振及动车轴承故障检测研究[J]. 振动与冲击,2019,38(13):26-33.
[11]尹进田,唐杰,刘丽,等. 参数同步优化随机共振在牵引传动系统早期微弱故障诊断中的应用[J]. 振动与冲击,2021,40(17):234-240.
[12]罗琦,朱敏,韦香. 多频信号的自适应随机共振检测方法[J]. 武汉大学学报(理学版),2013,59:260-266.
[13]COLLINS J J,CHOW C C,IMHOFF T T. Stochastic resonance without tuning[J]. Nature,1995,376:236-238.
[14]NEIMAN A,SCHIMANSKY G L. Stochastic resonance in bistable systems driven by harmonic noise[J]. Physical review letters,1994,72:2988-2991.
[15]CAPURRO A,PAKDAMAN K,NOMURA T,et al. Aperiodic stochastic resonance with correlated noise[J]. Physical review E,1998,58:4820-4827.
[16]FAUVE S,HESLOT F. Stochastic resonance in bistable system[J]. Physical review letters,1983,97A:5-7.
[17]COLLINS J J,IMHOFF T,GRIGG P. Noise-enhanced tactile sensation[J]. Nature,1996,383:770-770.
[18]HENEGHAN C,CHOW C C,COLLINS J J,et al. Imformation measure quantifying aperiodic stochastic resonance[J]. Physical review E,1996,54(3):2228-2231.
[19]NEIMAN A,BORIS S,VADIM A,et al. Dynamical entropies applied to stochastic resonance[J]. Physical review letters,1996,76(23):4299-4302.

Memo

Memo:
-
Last Update: 2022-12-15