[1]MCNAMARA B,WIESENFELD K. Theory of stochastic resonance[J]. Physical review A,1989,39(9):4854-4869.
[2]刘广凯,全厚德,康艳梅,等. 一种随机共振增强正弦信号的二次多项式接收方法[J]. 物理学报,2019,68:210501.
[3]JUNG P,HÄNGGI P. Amplification of small signals via stochastic resonance[J]. Physical review A,1991,44(12):8032-8042.
[4]GAMMAITONI L,MARCHESONI F,MENICHELLA-SAETTA E,et al. Stochastic resonance in bistable systems[J]. Physical review letters,1989,62:349-352.
[5]ZHOU T,MOSS F. Analog simulations of stochastic resonance[J]. Physical review A,1990,41(8):4255-4264.
[6]柏顺,颜夕宏,张生平,等. 基于梅尔频率倒谱系数与短时能量的低信噪比语音端点检测[J]. 南京师大学报(自然科学版),2021,44(2):117-120.
[7]马宏陆,葛琳琳,牛强,等. 一种基于改进EMD 的风机振动信号异常检测方法[J]. 南京师大学报(自然科学版),2017,40(1):55-64.
[8]乔岩茹,陈健龙,侯文. 基于布谷鸟算法优化随机共振参数的轴承故障检测算法[J]. 电子测量技术,2021,44(20):88-93.
[9]崔伟成,李伟,孟凡磊,等. 基于果蝇优化算法的自适应随机共振轴承故障信号检测方法[J]. 振动与冲击,2016,35(10):96-100.
[10]刘进军,冷永刚,张雨阳等. 势函数特征参数调节随机共振及动车轴承故障检测研究[J]. 振动与冲击,2019,38(13):26-33.
[11]尹进田,唐杰,刘丽,等. 参数同步优化随机共振在牵引传动系统早期微弱故障诊断中的应用[J]. 振动与冲击,2021,40(17):234-240.
[12]罗琦,朱敏,韦香. 多频信号的自适应随机共振检测方法[J]. 武汉大学学报(理学版),2013,59:260-266.
[13]COLLINS J J,CHOW C C,IMHOFF T T. Stochastic resonance without tuning[J]. Nature,1995,376:236-238.
[14]NEIMAN A,SCHIMANSKY G L. Stochastic resonance in bistable systems driven by harmonic noise[J]. Physical review letters,1994,72:2988-2991.
[15]CAPURRO A,PAKDAMAN K,NOMURA T,et al. Aperiodic stochastic resonance with correlated noise[J]. Physical review E,1998,58:4820-4827.
[16]FAUVE S,HESLOT F. Stochastic resonance in bistable system[J]. Physical review letters,1983,97A:5-7.
[17]COLLINS J J,IMHOFF T,GRIGG P. Noise-enhanced tactile sensation[J]. Nature,1996,383:770-770.
[18]HENEGHAN C,CHOW C C,COLLINS J J,et al. Imformation measure quantifying aperiodic stochastic resonance[J]. Physical review E,1996,54(3):2228-2231.
[19]NEIMAN A,BORIS S,VADIM A,et al. Dynamical entropies applied to stochastic resonance[J]. Physical review letters,1996,76(23):4299-4302.