[1]PENG S. Nonlinear expectations and stochastic calculus under uncertainly. With robust CLT and G-Brownian motion[EB/OL]. Probability Theory and Stochastic Modelling,95. Springer,Berlin(2019). Xiii+212 pp. ISBN:978-3-662-59902-0; 978-3-662-59903-7 60-02(39A50 60-01 60Fxx 60Hxx).
[2]PENG S. G-expectation,G-Brownian motion and realted stochastic calculus of Itô type[C]//Stochastic Analysis and Applications. Abel Symposium,Springer,Berlin,2007,2:541-567.
[3]DENIS L,HU M,PENG S. Function spaces and capacity related to a sublinear expectation:application to G-Brownain motion paths[J]. Potential Anal.,2011,34:139-161.
[4]GAO F Q. Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion[J]. Stochastic Process. Appl.,2009,119:3356-3382.
[5]HU M,WANG F,ZHENG G. Quasi-continuous random variables and processes under the G-expectation framework[J]. Stochastic Process. Appl.,2016,126:2367-2387.
[6]HU M,JI S,PENG S,SONG Y. Backward stochastic differential equation driven by G-Brownian motion[J]. Stochastic Process. Appl.,2014,124:759-784.
[7]HEAND K,HU M. Represnetation theorem for generators of BSDEs driven by G-Brownian motion and its applications[J]. Abstr. Appl. Anal.,2013,1:1-10.
[8]WANG F,ZHENG G. Backward stochastic differential equations driven by G-Brownian motion with uniformly continuous generators[J],J. Theoret. Probab.,2020,Doi:10.1007/s10959-020-00998-y.
[9]LI X,PENG S. Stopping times and related Ito'scalculus with G-Brownian motion[J]. Stochastic Process. Appl.,2011,121:1492-1508.
[10]LEPELTIER J,SAN MARTIN J. Backward stochastic differential equations with continuous coefficients[J]. Statist. Probab. Lett.,1997,34:425-430.
[11]GENG X,QIAN Z,YANG D. G-Brownian motion as rough paths and differential equations driven by G-Brownian motion as rough paths and differential equations driven by ownian motion[M]. Sminaire de Probabilits XLVI. Cham,Heidelberg,New York,Dordrecht London:Springer,2014:125-193.(eBook)