|Table of Contents|

High Utility Fuzzy Itemsets Mining Over Data Stream Based on Sliding Window Model(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2023年01期
Page:
120-129
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
High Utility Fuzzy Itemsets Mining Over Data Stream Based on Sliding Window Model
Author(s):
Shan ZhihuiHan MengHan Qiang
(1.School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China)
(2.The Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China)
Keywords:
data stream mining sliding window high utility itemsets mining fuzzy utility utility list
PACS:
TP391
DOI:
10.3969/j.issn.1001-4616.2023.01.016
Abstract:
High-utility itemsets mining(HUI)can provide interesting itemsets,but cannot provide information on the number of items. Therefore,high utility fuzzy itemsets are proposed. However,real-world data is constantly emerging. Thus,new incoming data needs to be processed in real time. To solve the problem that the current high utility fuzzy itemsets cannot handle the data stream,a fuzzy utility list(FUL)structure is proposed to store the information of items,including batch number of items,the transaction identifier of the items,the fuzzy utility of items,and the reminding fuzzy utility of items. FUL can effectively insert and delete batches. Finally,based on FUL,a high utility fuzzy itemset mining algorithm on data stream is proposed,extensive experiments on real and synthetic datasets show the efficiency and feasibility of the algorithm.

References:

[1]LIU Y,LIAO W,CHOUDHARY A. A two-phase algorithm for fast discovery of high utility itemsets[C]//Proceedings of the 9th Pacific-Asia Conf on Advances in Knowledge Discovery and Data Mining. Berlin:Springer,2005:689-695.
[2]DAM T L,KENLI L I,FOURNIER-VIGER P,et al. CLS-Miner:efficient and effective closed high-utility itemset mining[J]. Frontiers of computer science,2019,13(2):357-381.
[3]SETHI K K,DHARAVATH R. A fast high average-utility itemset mining with efficient tighter upper bounds and novel list structure[J]. Journal of supercomputing,2020,76(12):10288-10318.
[4]杨皓,段磊,胡斌,等. 带间隔约束Top-k对比序列模式挖掘[J]. 软件学报,2015,26(11):2994-3009.
[5]王晓璇,王丽珍,陈红梅,等. 基于特征效用参与率的空间高效用co-location模式挖掘方法[J]. 计算机学报,2019,42(8):1721-1738.
[6]吉根林,王敏. 时空轨迹聚集模式挖掘研究进展[J]. 南京师大学报(自然科学版),2015,38(4):1-7.
[7]NOUIOUA M,FOURNIER-VIGER P,WU C W,et al. FHUQI-Miner:fast high utility quantitative itemset mining[J]. Applied intelligence,2021,51(10):6785-6809.
[8]WANG C M,CHEN S H,HUANG Y F. A fuzzy approach for mining high utility quantitative itemsets[C]//In 2009 IEEE International Conference on Fuzzy Systems. IEEE,2009:1909-1913.
[9]LAN G C,HONG T P,LIN Y H,et al. Fuzzy utility mining with upper-bound measure[J]. Applied soft computing,2015,30:767-777.
[10]LAN G C,HONG T P,LIN Y H,et al. Fast discovery of high fuzzy utility itemsets[C]//2014 IEEE International Conference on Systems,Man,and Cybernetics(SMC). IEEE,2014:2764-2767.
[11]HONG T P,LIN C Y,HUANG W M. One-phase temporal fuzzy utility mining[C]//In 2020 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE). IEEE,2020:1-5.
[12]WU J M T,LIN J C W,FOURNIER-VIGER P,et al. A ga-based framework for mining high fuzzy utility itemsets[C]//2019 IEEE International Conference on Big Data(Big Data). IEEE,2019:2708-2715.
[13]YANG F,MU N,LIAO X,et al. EA-HUFIM:Optimization for fuzzy-based high-utility itemsets mining[J]. International journal of fuzzy systems,2021,23:1652-1668.
[14]宋威,刘明渊,李晋宏. 基于事务型滑动窗口的数据流中高效用项集挖掘算法[J]. 南京大学学报(自然科学),2014,50(4):494-504.
[15]TSAI P S M. Mining high utility itemsets in data streams based on the weighted sliding window model[J]. International journal of data mining and knowledge management process,2014,4(2):13-28.
[16]JAYSAWAL B P,HUANG J W. SOHUPDS:a single-pass one-phase algorithm for mining high utility patterns over a data stream[C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York:ACM,2020:490-497.
[17]DAWAR S,SHARMA V,GOYAL V. Mining top-k high-utility itemsets from a data stream under sliding window model[J]. Applied intelligence,2017,47(4):1240-1255.
[18]程浩东,韩萌,张妮,等. 基于滑动窗口模型的数据流闭合高效用项集挖掘[J]. 计算机研究与发展,2021,58(11):2500-2514.
[19]FOURNIER-VIGER P,WU C W,ZIDA S,et al. FHM:faster high-utility itemset mining using estimated utility co-occurrence pruning[C]//Processdings of 21st International Symposium on Methodologies for Intelligent Systems. Roskilde,Denmark:Lecture,2014:83-92.
[20]FOURNIER-VIGER P,GOMARIZ A,GUENICHE T,et al. SPMF:a Java open-source pattern mining library[J]. Journal of machine learning research,2014,15(1):3389-3393.
[21]HONG T P,LIN C Y,HUANG W M,et al. Using tree structure to mine high temporal fuzzy utility itemsets[J]. IEEE access,2020,8:153692-153706.

Memo

Memo:
-
Last Update: 2023-03-15