|Table of Contents|

Oscillation of Third-Order Neutral Differential Equations with Distributed Delays and Damping(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2023年02期
Page:
1-6
Research Field:
数学
Publishing date:

Info

Title:
Oscillation of Third-Order Neutral Differential Equations with Distributed Delays and Damping
Author(s):
Lin Wenxian
(College of Mathematics and Statistics,Hanshan Normal University,Chaozhou 521041,China)
Keywords:
oscillation distributed delays differential equations damping terms
PACS:
O175.1
DOI:
10.3969/j.issn.1001-4616.2023.02.001
Abstract:
The present paper focuses on the oscillation of the third-order nonliear neutral differential equations with distributed delays and damping. By applying the generalized Riccati transformation and some analytic techniques, we establish several oscillation criteria for the discussed equation, which show that any solution either oscillates or converges to zero. Finally, we gives some examples to prove the efficiency.

References:

[1]HALE J K,LUNEL S V. Introduction to functional differential equations[M]. New York:Springer-Verlag,1977.
[2]BACULIKOVA B,DZURINA J. Oscillation of third-order neutral differential equations[J]. Mathematical and computer modelling,2010,52(1):215-226.
[3]YANG L L,XU Z T. Oscillation of certain third-order quasilinear neutral differential equation[J]. Mathematica slovaca,2014,64(1):85-100.
[4]JIANG Y,JIANG C M,LI T X. Oscillatory behavior of third-order nonliear neutral delay differential equations[J]. Advances in difference equations,2016(1):171-182.
[5]林文贤. 一类具阻尼项的三阶半线性中立型泛函微分方程的Philos型振动结果[J]. 安徽大学学报(自然科学版),2016,55(6):28-32.
[6]林文贤. 一类具阻尼项的三阶非线性中立型泛函微分方程的振动性[J]. 中山大学学报(自然科学版),2016,40(6):1-4.
[7]林文贤. 三阶半线性中立型阻尼泛函微分方程的振动性[J]. 华东师范大学学报(自然科学版),2017,2017(3):48-53.
[8]惠远先,李培峦,戴丽华. 一类三阶非线性分布时滞动力方程的振动结果[J]. 浙江大学学报(理科版),2019,46(3):315-322.
[9]HARDY G H,LITTLEWOOD J E,POLYA G. Inequalities,second edition[M]. Cambridge:Cambridge University Press,1988.
[10]KIGURADGE I T,CHANTURIYA T A. Asymptotic properties of solutions of nonautonomous ordinary differential equations[M]. Dordreecht:Kluwer Academic Publishers,1993.

Memo

Memo:
-
Last Update: 2023-06-15