|Table of Contents|

Study on the Structural Evolution and Influencing Factors of Urban Energy Level Network in the Yangtze River Delta Region(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2023年02期
Page:
34-43
Research Field:
地理学
Publishing date:

Info

Title:
Study on the Structural Evolution and Influencing Factors of Urban Energy Level Network in the Yangtze River Delta Region
Author(s):
Liu Yanghui12Yang Shan12Fan Qingyu3Lin Jinping12Zhu Guanghao4
(1.School of Geography,Nanjing Normal University,Nanjing 210023,China)
(2.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China)
(3.School of Geography,Jiangsu Second Normal University,Nanjing 211200,China)
(4.School of Public Administration,Nanjing Normal University,Nanjing 210023,China)
Keywords:
urban energy level network structure spatial connection spatial-temporal evolution influencing factors Yangtze River Delta region
PACS:
F125; K921
DOI:
10.3969/j.issn.1001-4616.2023.02.005
Abstract:
The index system of urban energy level is constructed from four dimensions of innovation function, coordination function, openness function, and support function, and the comprehensive evaluation results of energy level is used to revise urban gravity model. The spatial connection characteristics of cities in the Yangtze River Delta region are analyzed, and QAP regression method is further used to analyze the influencing factors. The research results show that:(1)Since 2010, the overall urban energy level in the Yangtze River Delta region has been rising and developing towards a balanced situation. The spatial “center-periphery”form has been displayed, and many central cities such as Shanghai, Nanjing, and Hangzhou have formed “Z”high-value concentration areas, and low-energy cities are mainly distributed in the outer areas. In the urban energy level function system, the support function is the advantage dimension of high-quality regional development, and the coordination function is the short board dimension.(2)The connection degree of nodes in the urban energy level network in the Yangtze River Delta region is constantly strengthened. The spatial pattern of urban interaction and the pattern of urban energy level show spatial convergence, and the characteristics of multi-center spatial structure are constantly highlighted. The urban energy level network in the whole region presents a dense trend, and the robustness and accessibility of the network are improved. The concentration of urban nodes is stronger than the diffusion. Anhui Province shows the leading form of single nuclear radiation with Hefei as the center, while Jiangsu Province and Zhejiang Province show the leading form of multiple nuclear radiation with multiple cities as the center.(3)Many factors work together on the development of urban spatial connection. Economy, social, geographical location and spatial distance have significant influence on urban spatial connection.

References:

[1]叶南客,王聪. 长三角区域中心城市能级:内涵、测度与评价[J]. 中共南京市委党校学报,2019(5):1-8.
[2]PUGLISI M,MARVIN S. Developing urban and regional foresight:exploring capacities and identifying needs in the North West[J]. Futures,2002,34(8):761-777.
[3]HENNEMANN S,DERUDDER B. An alternative approach to the calculation and analysis of connectivity in the world city network[J]. Environment and planning B:planning and design,2014,41(3):392-412.
[4]KRESL P K,SINGH B. Competitiveness and the urban economy:twenty-four large US metropolitan areas[J]. Urban studies,1999,36(5):1017-1027.
[5]陆相林,马凌波,孙中伟,等. 基于能级提升的京津冀城市群旅游空间结构优化[J]. 地域研究与开发,2018,37(4):98-103.
[6]施祖辉. 上海与国际中心城市的功能能级比较[J]. 预测,1997(1):30-32.
[7]孙志刚. 城市功能论[M]. 北京:经济管理出版社,1998.
[8]赵全超,汪波,王举颖. 环渤海经济圈城市群能级梯度分布结构与区域经济发展战略研究[J]. 北京交通大学学报(社会科学版),2006(2):28-32.
[9]韩玉刚,曹贤忠. 皖江区域城市能级与生态环境协调度的测度和发展趋势研究[J]. 长江流域资源与环境,2015,24(6):909-916.
[10]方大春,孙明月. 长江经济带核心城市影响力研究[J]. 经济地理,2015,35(1):76-81.
[11]陈震,赵映慧,陈琪. 长江中游城市群网络联系能级研究——基于百度指数的探索[J]. 现代城市,2016,11(2):34-39.
[12]刘江会,贾高清. 上海离全球城市有多远?——基于城市网络联系能级的比较分析[J]. 城市发展研究,2014,21(11):30-38.
[13]姚永玲,董月,王韫涵. 北京和首尔全球城市网络联系能级及其动力因素比较[J]. 经济地理,2012,32(8):36-42.
[14]庄汝龙,宓科娜,赵彪,等. 基于可达性的中心城市场能与经济关联格局——以浙江省为例[J]. 经济地理,2016,36(9):58-65.
[15]FANG C,YU X,ZHANG X,et al. Big data analysis on the spatial networks of urban agglomeration[J]. Cities,2020,102:102735.
[16]REILLY W J. Method for the study of retail relationships[M]. Austin:University of Texas,1929.
[17]ZIPF G K. The P1P2/D hypothesis:on the intercity movement of persons[J]. American sociological review,1946,11(6):677-686.
[18]姜莉莉,袁家冬,邸玉双,等. 吉林省城市空间结构及地方中心城市腹地范围界定[J]. 地理科学,2020,40(8):1319-1327.
[19]徐建斌,占强,刘春浩,等. 基于经济联系与空间流的长株潭城市群空间异质性分析[J]. 经济地理,2015,35(10):36-43.
[20]刘庆芳,王兆峰. 粤港澳大湾区经济空间关联特征演变及网络效应[J]. 地理与地理信息科学,2022,38(2):55-62.
[21]谢诗光. 浙江省县际经济联系网络结构演化分析[J]. 世界地理研究,2020,29(4):738-749.
[22]曹卫东,曾刚,朱晟君,等. 长三角区域一体化高质量发展:问题与出路[J]. 自然资源学报,2022,37(6):1385-1402.
[23]焦欢. 对19个副省级及以上城市的城市能级测评[J]. 国家治理,2019(6):3-23.
[24]吕拉昌,谢媛媛,黄茹. 我国三大都市圈城市创新能级体系比较[J]. 人文地理,2013,28(3):91-95.
[25]欧进锋,许抄军,刘雨骐. 基于“五大发展理念”的经济高质量发展水平测度——广东省21个地级市的实证分析[J]. 经济地理,2020,40(6):77-86.
[26]陈子曦,青梅,杨玉琴. 成渝地区双城经济圈高质量发展水平测度及其时空收敛性[J]. 经济地理,2022,42(4):65-73.
[27]李金滟. 中三角城市群多维能级梯度分析与绿色崛起路径研究[J]. 统计与决策,2012(9):121-124.
[28]蒋海兵,李业锦. 京津冀地区制造业空间格局演化及其驱动因素[J]. 地理科学进展,2021,40(5):721-735.
[29]李梦程,王成新,刘海猛,等. 黄河流域城市发展质量评价与空间联系网络特征[J]. 经济地理,2021,41(12):84-93.
[30]汤放华,时新镇,龚蓉. 快速交通对城市可达性及经济联系影响研究——以湖南省为例[J]. 长江流域资源与环境,2022,31(1):49-58.
[31]赵东霞,韩增林,赵彪. 东北地区城市经济联系的空间格局及其演化[J]. 地理科学,2016,36(6):846-854.
[32]刘少丽,陆玉麒. 江苏省沿江地区城镇空间布局构想[J]. 南京师大学报(自然科学版),2010,33(2):109-114.
[33]苏海洋. 基于联系能级的粤港澳大湾区城市旅游网络结构及其效应研究[J]. 暨南学报(哲学社会科学版),2021,43(11):62-76.
[34]徐晨璐,钟业喜. 基于列车时刻表的长江中游城市群空间联系格局变化研究[J]. 南京师大学报(自然科学版),2017,40(4):148-153.
[35]张华,孙鹏. 多维邻近性对陕西泾阳茯茶产业集群创新的影响研究[J]. 南京师大学报(自然科学版),2022,45(2):34-43.
[36]王雪微,赵梓渝,曹卫东,等. 长三角城市群网络特征与省际边界效应——基于人口流动视角[J]. 地理研究,2021,40(6):1621-1636.
[37]盛科荣,李扬,孙威. 中国城市网络腹地空间格局及影响因素[J]. 经济地理,2021,41(3):66-76.
[38]江孝君,杨青山,刘杰,等. 东北三省区域经济差异的多尺度与多机制研究[J]. 地理科学,2020,40(3):383-392.
[39]叶超,于洁. 迈向城乡融合:新型城镇化与乡村振兴结合研究的关键与趋势[J]. 地理科学,2020,40(4):528-534.

Memo

Memo:
-
Last Update: 2023-06-15