[1]WEN C Y. The safety helmet detection technology and its application to the surveillance system[J]. Journal of forensic sciences,2004,49(4):770-780.
[2]DU S,SHEHATA M,BADAWY W. Hard hat detection in video sequences based on face features,motion and color information[C]//Proceedings of International Conference on Computer Research & Development,Shanghai,2011:25-29.
[3]WARANUSAST R,BUNDON N,TIMTONG V,et al. Machine vision techniques for motorcycle safety helmet detection[C]//Proceedings of 2013 28th International Conference on Image and Vision Computing New Zealand,Wellington,New Zealand,2013:35-40.
[4]JIAO L,ZHANG F,LIU F,et al. A survey of deep learning-based object detection[J]. IEEE Access,2019,7:128837-128868.
[5]REN S,HE K,GIRSHICK R B,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence,2017,39(6):1137-1149.
[6]GIRSHICK R B,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition,Columbus,USA,2014:580-587.
[7]GIRSHICK R B. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision(ICCV),Santiago,Chile,2015:1440-1448.
[8]HU X,LI H,LI X,et al. MobileNet-SSD MicroScope using adaptive error correction algorithm:real-time detection of license plates on mobile devices[J]. Iet intelligent transport systems,2020,14(2):110-118.
[9]CHEN Z,WU K,LI Y,et al. SSD-MSN:an improved multi-scale object detection network based on SSD[J]. IEEE access,2019,7:80622-80632.
[10]REDMON J,DIVVALA S K,GIRSHICK R B,et al. You only look once:unified,real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Las Vegas,NV,USA,2016:779-788.
[11]YIN Y,LI H,FU W. Faster-YOLO:an accurate and faster object detection method[J]. Digit signal process,2020,102:102756.
[12]SADYKOVA D,PERNEBAYEVA D,BAGHERI M,et al. IN-YOLO:real-time detection of outdoor high voltage insulators using UAV imaging[J]. IEEE transactions on power delivery,2020,35:1599-1601.
[13]NGUYEN D T,NGUYEN T N,KIM H,et al. A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection[J]. IEEE transactions on very large scale integration(VLSI)systems,2019,27(8):1861-1873.
[14]HUANG Z,WANG J. DC-SPP-YOLO:dense connection and spatial pyramid pooling based YOLO for object detection[J]. Information sciences,2020,522:241-258.
[15]REDMON J,FARHADI A. YOLO9000:better,faster,stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Honolulu,HI,USA,2017:6517-6525.
[16]REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL].(2018-04-08). https://doi.org/10.48550/arXiv.1804.02767.
[17]BOCHKOVSKIY A,WANG C Y,LIAO H Y M. YOLO v4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23). https://doi.org/10.48550/arXiv.2004.10934.
[18]FELZENSZWALB P F,MCALLESTER D A,RAMANAN D. A discriminatively trained,multiscale,deformable part model[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition,Anchorage,AK,USA,2008:1-8.
[19]GE Z,LIU S,WANG F,et al. YOLOX:exceeding YOLO series in 2021[EB/OL].(2021-08-06). https://doi.org/10.48550/arXiv.2107.08430.
[20]GENG R,MA Y,HUANG W. An improved helmet detection method for YOLOv3 on an unbalanced dataset[C]//Proceedings of 2021 3rd International Conference on Advances in Computer Technology,Information Science and Communication(CTISC),Shanghai,China,2021:328-332.
[21]DENG B,LEI X,YE M. Safety helmet detection method based on YOLOv4[C]//Proceedings of 2020 16th International Conference on Computational Intelligence and Security(CIS),Nanning,China,2020:155-158.
[22]TAN S,LU G,JIANG Z,et al. Improved YOLOv5 network model and application in safety helmet detection[C]//Proceedings of 2021 IEEE International Conference on Intelligence and Safety for Robotics(ISR),Tokoname,Japan,2021:330-333.