[1]马晓慧,马尚才,闫俊伢,等. 基于距离感知的目标情感分类模型[J]. 南京师大学报(自然科学版),2021,44(4):111-116.
[2]段吉东,刘双荣,马坤,等. 基于集成学习的文本情感分类方法[J]. 济南大学学报(自然科学版),2019,33(6):483-488.
[3]朱亚军,次曲,拥措. 基于SVM算法的藏文微博情感分析研究[J]. 计算机仿真,2022,39(8):226-229.
[4]冯媛媛,刘克剑,李伟豪. 基于BiLSTM+Self-Attention的多性格微博情感分类[J]. 西华大学学报(自然科学版),2022,41(1):67-76.
[5]NIU Z,ZHONG G,YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing,2021,452:48-62.
[6]GUO M H,XU T X,LIU J J,et al. Attention mechanisms in computer vision:a survey[J]. Computational visual media,2022,8(3):331-368.
[7]张旭辉,张郴,李雅南,等. 城市旅游餐饮体验的注意力机制模型建构——基于机器学习的网络文本深度挖掘[J]. 南京师大学报(自然科学版),2022,45(1):32-39.
[8]LI J,JIN K,ZHOU D,et al. Attention mechanism-based CNN for facial expression recognition[J]. Neurocomputing,2020,411:340-350.
[9]WANG Y,WU H,ZHANG J,et al. Predrnn:a recurrent neural network for spatiotemporal predictive learning[J]. IEEE transactions on pattern analysis and machine intelligence,2022,45(2):2208-2225.
[10]HEWAMALAGE H,BERGMEIR C,BANDARA K. Recurrent neural networks for time series forecasting:current status and future directions[J]. International journal of forecasting,2021,37(1):388-427.
[11]YIN B,CORRADI F,BOHTÉ S M. Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks[J]. Nature machine intelligence,2021,3(10):905-913.
[12]KISVARI A,LIN Z,LIU X. Wind power forecasting—a data-driven method along with gated recurrent neural network[J]. Renewable energy,2021,163:1895-1909.
[13]WEI X,ZHANG L,YANG H Q,et al. Machine learning for pore-water pressure time-series prediction:application of recurrent neural networks[J]. Geoscience frontiers,2021,12(1):453-467.
[14]邓君,孙绍丹,王阮,等. 基于Word2Vec和SVM的微博舆情情感演化分析[J]. 情报理论与实践,2020,43(8):112-119.
[15]吴仁彪,乔晗,贾云飞,等. 基于胶囊网络的中长微博情感分析[J]. 信号处理,2022,38(8):1632-1641.
[16]林伟. 基于PSO-LSTM的中文微博情感分类研究[J]. 中国人民公安大学学报(自然科学版),2022,28(1):95-101.