[1]陈桂香. 大数据对我国高校教育管理的影响及对策研究[D]. 武汉:武汉大学,2017.
[2]RAY S,SAEED M. Applications of educational data mining and learning analytics tools in handling big data in higher education[M]//Applications of big data analytics. Switzerland:Springer,Cham,2018:135-160.
[3]YANG F,LI F W B. Study on student performance estimation,student progress analysis,and student potential prediction based on data mining[J]. Computers & education,2018,123:97-108.
[4]SALAL Y K,ABDULLAEV S M,KUMAR M. Educational data mining:Student performance prediction in academic[J]. International journal of engineering and advanced technology,2019,8(4C):54-59.
[5]聂秀山,马玉玲,乔慧妍,等. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报(工学版),2022,52(2):1-14.
[6]HUSSAIN M,ZHU W,ZHANG W,et al. Using machine learning to predict student difficulties from learning session data[J]. Artificial intelligence review,2019,52(1):381-407.
[7]MUEEN A,ZAFAR B,MANZOOR U. Modeling and predicting students' academic performance using data mining techniques[J]. International journal of modern education & computer science,2016,8(11):36-42.
[8]FRANCIS B K,BABU S S. Predicting academic performance of students using a hybrid data mining approach[J]. Journal of medical systems,2019,43(6):1-15.
[9]MARBOUTI F,DIEFES-DUX H A,MADHAVAN K. Models for early prediction of at-risk students in a course using standards-based grading[J]. Computers & education,2016,103:1-15.
[10]TOMASEVIC N,GVOZDENOVIC N,VRANES S. An overview and comparison of supervised data mining techniques for student exam performance prediction[J]. Computers & education,2020,143:103676.
[11]KIM B H,VIZITEI E,GANAPATHI V. GritNet:Student performance prediction with deep learning[J/OL]. arXiv Preprint,2018. 10.48550/arXiv:1804.07405.
[12]LIU Q,HUANG Z,YIN Y,et al. Ekt:Exercise-aware knowledge tracing for student performance prediction[J]. IEEE transactions on knowledge and data engineering,2019,33(1):100-115.
[13]WAHEED H,HASSAN S U,ALJOHANI N R,et al. Predicting academic performance of students from VLE big data using deep learning models[J]. Computers in human behavior,2020,104:106189.
[14]MONTAVON G,SAMEK W,MüLLER K R. Methods for interpreting and understanding deep neural networks[J]. Digital signal processing,2018,73:1-15.
[15]PANDEY M,TARUNA S. A comparative study of ensemble methods for students' performance modeling[J]. International journal of computer applications,2014,103(8):26-32.
[16]AMRIEH E A,HAMTINI T,ALJARAH I. Mining educational data to predict student's academic performance using ensemble methods[J]. International journal of database theory and application,2016,9(8):119-136.
[17]BATOOL S,RASHID J,NISAR M W,et al. A random forest students' performance prediction(rfspp)model based on students' demographic features[C]//2021 Mohammad Ali Jinnah University International Conference on Computing(MAJICC). USA:IEEE,2021:1-4.
[18]AHMED D M,ABDULAZEEZ A M,ZEEBAREE D Q,et al. Predicting university's students performance based on machine learning techniques[C]//2021 IEEE International Conference on Automatic Control & Intelligent Systems(I2CACIS). New York,USA:IEEE,2021:276-281.
[19]DUAN D,DAI C,TU R. Research on the prediction of students' academic performance based on XGBoost[C]//2021 Tenth International Conference of Educational Innovation through Technology(EITT). New York,USA:IEEE,2021:316-319.
[20]张新玉. 类不平衡数据分类关键技术研究[D]. 武汉:武汉大学,2021.
[21]GHORBANI R,GHOUSI R. Comparing different resampling methods in predicting students' performance using machine learning techniques[J]. IEEE access,2020,8:67899-67911.
[22]ARTHUR D,VASSILVITSKII S. k-means++:The advantages of careful seeding[C]//Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithm. New Orleans:SIAM,2006:1027-1035.
[23]CHEN T,GUESTRIN C. Xgboost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. California. USA:ACM,2016:785-794.