[1]BONDY J A,MURTY U S R. Graph Theory[M]. Graduate Texts in Mathematics,London:Springer-Verlag,2008.
[2]ZHOU S Z,SUN Z R. Some existence theorems on path factors with given properties in graphs[J]. Acta mathematica sinica,English series,2020,36(8):917-928.
[3]AKIYAMA J,AVIS D,ERA H. On a{1,2}-factor of a graph[J]. Tru mathematics,1980,16:97-102.
[4]KANEKO A. A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two[J]. Journal of combinatorial theory,series B,2003,88:195-218.
[5]ZHANG H P,ZHOU S. Characterizations for P≥2-factor and P≥3-factor covered graphs[J]. Discrete mathematics,2009,309:2067-2076.
[6]ZHOU S Z. Binding numbers and restricted fractional(g,f)-factors in graphs[J]. Discrete applied mathematics,2021,305:350-356.
[7]ZHOU S Z,BIAN Q X,PAN Q R. Path factors in subgraphs[J]. Discrete applied mathematics,2022,319:183-191.
[8]ZHOU S Z,LIU H X,XU Y. A note on fractional ID-[a,b]-factor-critical covered graphs[J]. Discrete applied mathematics,2022,319:511-516.
[9]ZHOU S Z,WU J C,BIAN Q X. On path-factor critical deleted(or covered)graphs[J]. Aequationes mathematicae,2022,96:795-802.
[10]GAO W,WANG W F. Tight binding number bound for P]-factor-critical covered graphs[J]. Discrete applied mathematics,2022,319:511-516.
[9]ZHOU S Z,WU J C,BIAN Q X. On path-factor critical deleted(or covered)graphs[J]. Aequationes mathematicae,2022,96:795-802.
[10]GAO W,WANG W F. Tight binding number bound for b>≥3-factor uniform graphs[J]. Information processing letters,2021,172,106162.