[1]CHAPLAIN M,LOLAS G. Mathematical modelling of cancer invasion of tissue:dynamic heterogeneity[J]. Networks and heterogen media,2016(1):399-439.
[2]ZHENG J,KE Y. Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in mensions[J]. Journal of differential equations,2019,266:1969-2018.
[3]XU H,ZHANG L,JIN C. Global solvability and large time behavior to a chemotaxis-haptotaxis model with nonlinear diffusion[J]. Nonlinear analysis:real world applications,2019,46:238-256.
[4]JIA Z,YANG Z D. Global boundedness to a chemotaxis-haptotaxis model with nonlinear diffusion[J]. Applied mathematics letters,2020,103:106192.
[5]JIA Z,YANG Z D. Global boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion and signal production[J]. Acta mathematic scientia,2021,41A(5):1382-1395.
[6]JIN C. Large time behavior of solutions to a chemotaxis model with porous medium diffusion[J]. Journal of mathematical analysis and applications,2019,478:195-211.
[7]TAO Y,WINKLER M. Large time behavior in a multidimensional chemotaxis-hapotaxis model with slow signal diffusion[J]. SIAM journal on mathematical analysis,2015,47:4229-4250.
[8]TAO Y. Boundedness in a two-dimensional chemotaxis-haptotaxis system[J]. arXiv:1407.7382,2014.
[9]JIN C. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion[J].Discrete and continuous dynamical systems,2018,23(4):1675-1688.
[10]LI Y,LANKEIT J. Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion[J]. Nonlinearity,2016,29:1564-1595.