|Table of Contents|

Effect of Built Environment on Ventilation Potential Based on Multi-scale Geographically Weighted Regression:a Case Study of the Main Urban Area of Wuhan(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2023年04期
Page:
29-39
Research Field:
地理学
Publishing date:

Info

Title:
Effect of Built Environment on Ventilation Potential Based on Multi-scale Geographically Weighted Regression:a Case Study of the Main Urban Area of Wuhan
Author(s):
Yang JiamingAn RuiTong ZhaominLiu Yanfang
(School of Resource and Environmental Sciences,Wuhan University,Wuhan 430079,China)
Keywords:
circuit theory ventilation potential built environment multi-scale geographically weighted regression
PACS:
K909
DOI:
10.3969/j.issn.1001-4616.2023.04.006
Abstract:
Metropolises tend to improve urban ventilation potential through optimizing built environment(BE)to alleviate urban heat island and promote regional environment quality. The simulation of the urban ventilation potential based on wind tunnel tests and other methods lack continuous monitoring on a large scale,and traditional regression methods overlook the spatial non-stationary and scale effects of built environment effects. This paper applies circuit theory to identify the ventilation potential of the main urban area of Wuhan, forms an indicator system to describe the BE based on 3Ds(density,diversity,design)theory,and compares the results of ordinary least squares(OLS),geographically weighted regression(GWR)and multi-scale geographically weighted regression(MGWR)models detailedly. The result has confirmed the necessity of using a local model that considers spatial heterogeneity. MGWR relaxes the fixed bandwidth assumption of the GWR model,further considers the scale effect of built environment factors,effectively avoids overfitting and abnormal symbol reversal. Relevant research should consider the spatial heterogeneity and scale effects of driving mechanisms.

References:

[1]KIM S W,BROWN R D. Urban heat island(UHI)intensity and magnitude estimations:a systematic literature review[J]. Science of the total environment,2021,779:146389.
[2]HAN L,ZHAO J,ZHANG T,et al. Urban ventilation corridors exacerbate air pollution in central urban areas:evidence from a Chinese city[J]. Sustainable cities and society,2022,87:104129.
[3]王梓茜,程宸,杨袁慧,等. 基于多元数据分析的城市通风廊道规划策略研究——以北京副中心为例[J]. 城市发展研究,2018,25(1):87-96.
[4]梁颢严,李晓晖,肖荣波. 城市通风廊道规划与控制方法研究——以《广州市白云新城北部延伸区控制性详细规划》为例[J]. 风景园林,2014(5):92-96.
[5]REN C,YANG R,CHENG C,et al. Creating breathing cities by adopting urban ventilation assessment and wind corridor plan:the implementation in Chinese cities[J]. Journal of wind engineering and industrial aerodynamics,2018,182:170-188.
[6]成雅田,吴昌广. 基于局地气候优化的城市蓝绿空间规划途径研究进展[J]. 应用生态学报,2020,31(11):3935-3945.
[7]ZHAO Y,LI R,FENG L,et al. Boundary layer wind tunnel tests of outdoor airflow field around urban buildings:a review of methods and status[J]. Renewable and sustainable energy reviews,2022,167:112717.
[8]CHEN G,RONG L,ZHANG G. Impacts of urban geometry on outdoor ventilation within idealized building arrays under unsteady diurnal cycles in summer[J]. Building and environment,2021,206:108344.
[9]李心雨,杨昀,李自如,等. WRF大气模式与台风经验模型在超强台风“山竹”过程重构中的比较分析[J]. 海洋工程,2022,40(4):53-64.
[10]HE J,CHEN D,GU Y,et al. Evaluation of planetary boundary layer schemes in WRF model for simulating sea-land breeze in Shanghai,China[J]. Atmospheric research,2022,278:106337.
[11]LIU X,HUANG B,LI R,et al. Wind environment assessment and planning of urban natural ventilation corridors using GIS:Shenzhen as a case study[J]. Urban climate,2022,42:101091.
[12]XIE P,YANG J,WANG H,et al. A new method of simulating urban ventilation corridors using circuit theory[J]. Sustainable cities and society,2020,59:102162.
[13]XIE P,YANG J,SUN W,et al. Urban scale ventilation analysis based on neighborhood normalized current model[J]. Sustainable cities and society,2022,80:103746.
[14]刘勇洪,徐永明,张方敏,等. 城市地表通风潜力研究技术方法与应用——以北京和广州中心城为例[J]. 规划师,2019,35(10):32-40.
[15]JIANG Y,HUANG J,SHI T,et al. Interaction of urban rivers and green space morphology to mitigate the urban heat island effect:case-based comparative analysis[J]. International journal of environmental research and public health,2021,18(21):11404.
[16]FANG Y,ZHAO L. Assessing the environmental benefits of urban ventilation corridors:a case study in Hefei,China[J]. Building and environment,2022,212:108810.
[17]FANG Y,GU K,QIAN Z,et al. Performance evaluation on multi-scenario urban ventilation corridors based on least cost path[J]. Journal of urban management,2021,10(1):3-15.
[18]KIM J,YI Y K,MALKAWI A. Topography integration to wind downscaling[J]. Building and environment,2017,115:306-315.
[19]江颖慧,焦利民,张博恩. 城市地表温度与NDVI空间相关性的尺度效应[J]. 地理科学进展,2018,37(10):1362-1370.
[20]AN R,WU Z,TONG Z,et al. How the built environment promotes public transportation in Wuhan:a multiscale geographically weighted regression analysis[J]. Travel behaviour and society,2022,29:186-199.
[21]WONG M S,NICHOL J E,TO P H,et al. A simple method for designation of urban ventilation corridors and its application to urban heat island analysis[J]. Building and environment,2010,45:1880-1889.
[22]YIN J,ZHAN Q,TAYYAB M,et al. The ventilation efficiency of urban built intensity and ventilation path identification:a case study of Wuhan[J]. International journal of environmental research and public health,2021,18(21):11684.
[23]WICHT M,WICHT A,OSIAN'G1SKA-SKOTAK K,et al. Mapping urban porosity and roughness characteristics as a mean of defining urban ventilation corridors[C]//Conference on Remote Sensing Technologies and Applications in Urban Environments Ⅱ. Warsaw,Poland. 2017.
[24]LI J,YOU W,DING W. Exploring urban space quantitative indicators associated with outdoor ventilation potential[J]. Sustainable cities and society,2022,79:103696.
[25]WANG W,WANG D,CHEN H,et al. Identifying urban ventilation corridors through quantitative analysis of ventilation potential and wind characteristics[J]. Building and environment,2022,214:108943.
[26]EWING R,CERVERO R. Travel and the built environment[J]. Journal of the American Planning Association,2010,76(3):265-294.
[27]张瑞. 济南道路交通与城市热岛效应研究[D]. 济南:山东建筑大学,2015.
[28]张硕,房小怡,陈静,等. 城市通风廊道规划技术研究——以石家庄都市区为例[J]. 气象与环境科学,2022,45(3):51-61.
[29]王录仓. 基于百度热力图的武汉市主城区城市人群聚集时空特征[J]. 西部人居环境学刊,2018,33(2):52-56.
[30]党云晓,董冠鹏,余建辉,等. 北京土地利用混合度对居民职住分离的影响[J]. 地理学报,2015,70(6):919-930.
[31]HE B,DING L,PRASAD D. Enhancing urban ventilation performance through the development of precinct ventilation zones:a case study based on the Greater Sydney,Australia[J]. Sustainable cities and society,2019,47:101472.
[32]ZAKEK K,OTIR K,KOKALJ . Sky-view factor as a relief visualization technique[J]. Remote sensing,2011,3(2):398-415.
[33]GRIMMOND C S B,OKE T R. Aerodynamic properties of urban areas derived from analysis of surface form[J]. Journal of applied meteorology,1999,38(9):1262-1292.
[34]HE Y C,CHAN P W,LI Q S. Estimation of roughness length at Hong Kong International Airport via different micrometeoro-logical methods[J]. Journal of wind engineering and industrial aerodynamics,2017,171:121-136.
[35]FOTHERINGHAM A S,YANG W,KANG W. Multiscale geographically weighted regression(MGWR)[J]. Annals of the American Association of Geographers,2017,107(6):1247-1265.
[36]韩邦龙. 基于风环境评价的城市街区空间形态指标量化研究[D]. 沈阳:沈阳建筑大学,2020.

Memo

Memo:
-
Last Update: 2023-12-15