|Table of Contents|

Short-term Load Forecasting Method Based on Feature Selection and Combination Forecasting Model(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2023年04期
Page:
114-124
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Short-term Load Forecasting Method Based on Feature Selection and Combination Forecasting Model
Author(s):
Lu JiahuaMei FeiYang SaiTang YuHua Haochen
(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China)
Keywords:
feature selection regression model time series model combination forecasting model
PACS:
TM715; TP183
DOI:
10.3969/j.issn.1001-4616.2023.04.015
Abstract:
Improving the accuracy of short-term forecasting of bus load in a distribution network is crucial to its dispatch and operation. With the increasing number of weather-sensitive loads in the distribution network,the influence of load fluctuation caused by meteorological factors on forecasting accuracy also increases. Aiming at the problem of meteorological feature selection in traditional load forecasting modeling,an optimal meteorological feature selection process was proposed based on the maximum correlation,minimum redundancy,and maximum synergy of features. On this basis,based on different time dimensions of different characteristics,a short-term load combination forecasting model combining regression model and time series model is proposed. The model uses the regression model to fit the future date-time characteristics and meteorological characteristics and uses the convolutional neural network and bidirectional gated recurrent unit to construct a time series model to describe the time series characteristics of the historical load and meteorological time series and the cumulative effect of meteorological factors. Example analysis proves that the feature selection method has a lower forecast error than the traditional feature selection methods. Compared with the traditional regression and time-series model,the forecasting accuracy of combination forecasting model is improved significantly.

References:

[1]郭创新,刘祝平,冯斌,等. 新型电力系统风险评估研究现状及展望[J]. 高电压技术,2022,48(9):3394-3404.
[2]徐潇源,王晗,严正,等. 能源转型背景下电力系统不确定性及应对方法综述[J]. 电力系统自动化,2021,45(16):2-13.
[3]张东霞,苗新,刘丽平,等. 智能电网大数据技术发展研究[J]. 中国电机工程学报,2015,35(1):2-12.
[4]李鹏,何帅,韩鹏飞,等. 基于长短期记忆的实时电价条件下智能电网短期负荷预测[J]. 电网技术,2018,42(12):4045-4052.
[5]陆继翔,张琪培,杨志宏,等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化,2019,43(8):131-137.
[6]庞昊,高金峰,杜耀恒. 基于时间卷积网络分位数回归的短期负荷概率密度预测方法[J]. 电网技术,2020,44(4):1343-1350.
[7]蔡舒平,闫静,刘国海,等. 基于Fisher信息和在线SVR的智能电网气象敏感负荷预测动态建模技术[J]. 中国电机工程学报,2020,40(11):3441-3451.
[8]王继东,杜冲. 基于Attention-BiLSTM神经网络和气象数据修正的短期负荷预测模型[J]. 电力自动化设备,2022,42(4):172-177,224.
[9]ZHANG G Q,GUO J F. A novel method for hourly electricity demand forecasting[J]. IEEE transactions on power systems,2020,35(2):1351-1363.
[10]孙辉,杨帆,高正男,等. 考虑特征重要性值波动的MI-BILSTM短期负荷预测[J]. 电力系统自动化,2022,46(8):95-103.
[11]LI C,LI G J,WANG K Y,et al. A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems[J]. Energy,2022,259:124967.
[12]HU Z Y,BAO Y K,XIONG T,et al. Hybrid filter-wrapper feature selection for short-term load forecasting[J]. Engineering applications of artificial intelligence,2014,40:17-27.
[13]WANG Y,GAN D,ZHANG N,et al. Feature selection for probabilistic load forecasting via sparse penalized quantile regression[J]. Modern power system and clean energy,2019,7:1200-1209.
[14]郭玲,徐青山,郑乐. 基于TCN-GRU模型的短期负荷预测方法[J]. 电力工程技术,2021,40(3):66-71.
[15]任建吉,位慧慧,走卓霖,等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制,2022,50(8):108-116.
[16]JIANG L J,WANG X L,LI W,et al. Hybrid multitask multi-information fusion deep learning for household short-term load forecasting[J]. IEEE transactions on smart grid,2021,12(6):5362-5372.
[17]AFRASIABI M,MOHAMMADI M,RASTEGAR M,et al,Deep-based conditional probability density function forecasting of residential loads[J]. IEEE transactions on smart grid,2020,11(4):3646-3657.
[18]杨海柱,田馥铭,张鹏,等. 基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测[J]. 电力系统保护与控制,2022,50(13):126-133.
[19]ZHANG C,LI R. A novel closed-loop clustering algorithm for hierarchical load forecasting[J]. IEEE transactions on smart grid,2021,12(1):432-441.
[20]刘亚珲,赵倩. 基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测[J]. 电网技术,2021,45(11):4444-4451.
[21]董新伟,卜智龙,陈鸣慧,等. 基于VMD-LSTMQR的滚动母线负荷区间预测[J]. 电力工程技术,2021,40(6):9-17.
[22]ABEDINIA O,AMJADY N,ZAREIPOUR H. A new feature selection technique for load and price forecast of electrical power systems[J]. IEEE transactions on power systems,2017,32(1):62-74.
[23]李滨,陆明珍. 考虑实时气象耦合作用的地区电网短期负荷预测建模[J]. 电力系统自动化,2020,44(17):60-68.
[24]KO M S,KO L,HUR K. Feedforward error learning deep neural networks for multivariate deterministic power forecasting[J]. IEEE transactions on industrial informatics,2022,18(9):6214-6223.

Memo

Memo:
-
Last Update: 2023-12-15