|Table of Contents|

A Low-Order Locking-Free Virtual Element Method for the Linear Elasticity Problem(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2024年01期
Page:
1-6
Research Field:
数学
Publishing date:

Info

Title:
A Low-Order Locking-Free Virtual Element Method for the Linear Elasticity Problem
Author(s):
Wang XiaohanWang Feng
(School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China)
Keywords:
linear elasticity problemlow-order virtual element methodlocking phenomenon
PACS:
O24
DOI:
10.3969/j.issn.1001-4616.2024.01.001
Abstract:
In this paper,we propose a low-order virtual element method for the linear elasticity problem in two dimensions. We construct a discrete space by enriching the low order conforming virtual element space with discontinuous piecewise linear vector-valued functions. A corresponding discrete problem is introduced. It is proved that the error estimation is optimal with respect to the energy norm,and the hidden constant is independent of the Lamé constant λ. Finally,some numerical examples are given to verify the theoretical results.

References:

[1]BABUSKA I,SZABO B. On the rates of convergence of the finite element method[J]. International journal for numerical methods in engineering,1982,18:323-341.
[2]BRENNER S C,SUNG L Y. Linear finite element methods for planar linear elasticity[J]. Mathematics of computation,1992,59:321-338.
[3]CROUZEIX M,RAVIART P. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I[J]. ESAIM:mathmatical modelling and numerical analysis,1973,7:33-75.
[4]BRENNER S C. Korn's inequalities for piecewise H1 vector fields[J]. Mathematics of computation,2004,73:1067-1087.
[5]HANSBO P,LARSON M G. Discontinuous Galerkin and the Crouzeix-Raviart element:application to elasticity[J]. ESAIM mathematical modelling and numerical analysis,2003,37:63-72.
[6]WIHLER T P. Locking-free DGFEM for elasticity problems in polygons[J]. IMA journal of numerical analysis,2004,24,45-75.
[7]WIHLER T P. Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems[J]. Mathematics of compution,2006,75:1087-1102.
[8]YI S Y,LEE S,ZIKATANOV L. Locking-free Enriched Galerkin Method for linear elasticity[J]. SIAM journal on numerical analysis,2002,60:52-75.
[9]BEIRÃO DA VEIGA L,BREZZI F,CANGIANI A,et al. Basic principles of virtual element methods[J]. Mathematical models and methods in applied sciences,2013,23:199-214.
[10]BEIRÃO DA VEIGA L,BREZZI F,MAREINI L D. Virtual elements for linear elasticity problems[J]. SIAM journal on numerical analysis,2013,51:794-812.
[11]ZHANG B,ZHAO J,YANG Y,et al. The nonconforming virtual element method for elasticity problems[J]. Journal of computational physics,2019,378:394-410.
[12]KWAK DO Y,PARK H. Lowest-order virtual element methods for linear elasticity problems[J]. Computer methods in applied mechanics and engineering,2022,390.
[13]ADAMS R A,FOURNIER J J F. Sobolev spaces[M]. Netherland:Academic Press,2003.
[14]ARNOLD D N,DOUGLAS J,GUPTA C P. A family of higher order mixed finite element methods for plane elasticity[J]. Numerische mathematics,1984,45:1-22.
[15]BRENNER S C,GUAN Q,SUNG L Y. Some estimates for virtual element methods[J]. Computational methods in applied mathematics,2017,17:553-574.

Memo

Memo:
-
Last Update: 2024-03-15