|Table of Contents|

Invariants Along the Recollements and Equivalences of Gorenstein Stable Categories(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2024年02期
Page:
1-7
Research Field:
数学
Publishing date:

Info

Title:
Invariants Along the Recollements and Equivalences of Gorenstein Stable Categories
Author(s):
Gao NanChen Haobiao
(Department of Mathematics,Shanghai University,Shanghai 200444,China)
Keywords:
Gorenstein projective modulesGorenstein projecitve rigidity dimensionGorenstein stable equivalencesrecollements of triangulated categories
PACS:
O154.2
DOI:
10.3969/j.issn.1001-4616.2024.02.001
Abstract:
We introduce the Gorenstein projective rigidity dimension,and show that the Gorenstein projective rigidity dimension is invariant with respect to Morita equivalences,Gorenstein stable equivalences and derived equivalences,where the recollements of the stable categories of Gorenstein projective modules are the main tool. Furthermore,we characterize the Gorenstein projective rigidity dimension of some classes of algebras.

References:

[1]DENNIS R K,IGUSA K. Hochschild homology and the second obstruction for pseudoisotopy[C]//Algebraic K-Theory:Proceedings of a Conference Held at Oberwolfach. Berlin,Heidelberg:Springer,2006:7-58.
[2]LODAY J L. Jean-louis cyclic homology[M]. Berlin:Springer-Verlag,1992.
[3]HAPPEL D. Triangulated categories in the representation of finite dimensional algebras[M]. Cambridge:Cambridge University Press,1988.
[4]HAPPEL D. Reduction techniques for homological conjectures[J]. Tsukuba journal of mathematics,1993,17(1):115-130.
[5]KELLER B. Invariance of cyclic homology under derived equivalence,Representation theory of algebras[M]. Providence,RI:American Mathematical Society,1996.
[6]KELLER B. Derived categories and their uses[J]. Handbook of algebra,1996,1:671-701.
[7]PAN S,XI C. Finiteness of finitistic dimension is invariant under derived equivalences[J]. Journal of algebra,2009,322(1):21-24.
[8]KRAUSE H. Representation type and stable equivalence of Morita type for finite dimensional algebras[J]. Mathematische zeitschrift,1998,229:601-606.
[9]LIU Y,XI C. Constructions of stable equivalences of Morita type for finite dimensional algebras II[J]. Mathematische zeitschrift,2005,251:21-39.
[10]PAN S,ZHOU G. Stable equivalences of Morita type and stable Hochschild cohomology rings[J]. Archiv der mathematik,2010,94(6):511-518.
[11]XI C. Representation dimension and quasi-hereditary algebras[J]. Advances in mathematics,2002,168(2):193-212.
[12]ENOCHS E E,JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische zeitschrift,1995,220(1):611-633.
[13]AUSLANDER M,BRIDGER M. Stable module theory[M]. Providence:American Mathematical Society,1969.
[14]ENOCHS E E,JENDA O M G. Relative homological algebra:Volume 1[M]. Berlin:Walter de Gruyter,GmbH and CO.KG,2011.
[15]GAO N,ZHANG P. Gorenstein derived categories[J]. Journal of algebra,2010,323(7):2041-2057.
[16]HAPPEL D. On gorenstein algebras[C]//Representation Theory of Finite Groups and Finite-Dimensional Algebras:Proceedings of the Conference at the University of Bielefeld from May 15-17,1991,and 7 Survey Articles on Topics of Representation Theory. Birkhäuser Basel,1991:389-404.
[17]RICKARD J. Derived equivalence as derived functors[J]. Journal of London mathematics,1991,43(2):37-48.
[18]HU W,PAN S. Stable functors of derived equivalences and Gorenstein projective modules[J]. Mathematische Nachrichten,2017,290(10):1512-1530.
[19]BEILINSON A A,DELIGNE P. Faisceaux pervers,analysis and topology on singular spaces[M]. Paris:France Mathematical Society,1982.
[20]TADASI NAKAYAMA. On algebras with complete homology[J]. Abhandlungen aus dem mathematischen seminar der universität hamburg,1958(22):300-307.
[21]TACHIKAWA H. On dominant dimensions of algebras[J]. Transactions of the American Mathematical Society,1964,112(2):249-266.
[22]TACHIKAWA H. Quasi-Frobenius Rings and Generalizations[M]. Springer Lecture Notes in Mathematics. Berlin,New York:Springer-Verlag,1973.
[23]MÜLLER B J. The classification of algebras by dominant dimension[J]. Canadian journal of mathematics,1968,20:398-409.
[24]YAMAGATA K. Frobenius algebras[M]. North-Holland,Amsterdam:Elsevier,1996:841-887.
[25]CHEN H,XI C. Dominant dimensions,derived equivalences and tilting modules[J]. Israel journal of mathematics,2016,215:349-395.
[26]CHEN H,FANG M,KERNER O,et al. Rigidity dimension of algebras[C]//Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge:Cambridge University Press,2021,170(2):417-443.
[27]GAO N,KOENIG S. Grade,dominant dimension and Gorenstein algebras[J]. Journal of algebra,2015,427:118-141.
[28]HU W,LUO X H,XIONG B L,et al. Gorenstein projective bimodules via monomorphism categories and filtration categories[J]. Journal of pure and applied algebra,2019,223(3):1014-1039.
[29]BEILINSON A A,GINSBURG V A,SCHECHTMAN V V. Koszul duality[J]. Journal of geometry and physics,1988,5(3):317-350.
[30]HÜGEL L A,KOENIG S,LIU Q,et al. Ladders and simplicity of derived module categories[J]. Journal of algebra,2017,472:15-66.
[31]GAO N,XU X. Homological epimorphisms,compactly generated t-structures and Gorenstein-projective modules[J]. Chinese annals of mathematics(Series B),2018,39:47-58.

Memo

Memo:
-
Last Update: 2024-06-15